

Power Master Plan

Sewerage and Water Board of New Orleans

Power Master Plan Report

PPS0122201258NWO | 0 March 2020

Power Master Plan

Project No: SWBNWO08

Document Title: Power Master Plan Report

Document No.: PPS0122201258NWO

Revision: 0

Date: March 2020

Client Name: Sewerage and Water Board of New Orleans

Project Manager: Amanda Gaze

Author: Sonya Reiser

File Name: SWBNO_PMP_Report_Final_2020Mar19

Jacobs Engineering Inc.

1515 Poydras Street, Suite 1260 New Orleans, Louisiana 70112 United States

www.jacobs.com

© Copyright 2020 Jacobs Engineering Inc. The concepts and information contained in this document are the property of Jacobs. Use or copying of this document in whole or in part without the written permission of Jacobs constitutes an infringement of copyright.

Limitation: This document has been prepared on behalf of, and for the exclusive use of Jacobs' client, and is subject to, and issued in accordance with, the provisions of the contract between Jacobs and the client. Jacobs accepts no liability or responsibility whatsoever for, or in respect of, any use of, or reliance upon, this document by any third party.

Document history and status

Revision	Date	Description	Ву	Review	Approved
Α	01/2020	DRAFT for SWBNO Review	SLR	CRF	AG
В	03/2020	Draft Final Report	SLR	CRF	AG
0	03/2020	Final Report	SLR	CRF	AG

Contents

Abbre	viations	, Acronyms, and Definitions	v
Execu	tive Sun	nmary	1
1.	1.1 1.2 1.3	uction Background Power Master Plan Problem Statement Evaluation Approach	1-1 1-2
2.	Right-s	sizing AnalysisInventory of Existing Assets	
	2.1	2.1.1 Asset Classification	2-5
	2.2	SWBNO Generating Assets Total Required Generation Capacity	2-8
	2.3	Firm Reliable Generation Capacity	
3.	3.1	Key Considerations 3.1.1 Public Welfare 3.1.2 Efficiency, Sustainability, and Cost of Operation	3-1 3-2 3-3
	3.2	3.1.3 Equipment Selection 3.1.4 Substation Capacity Alternative 0 – Extend Remaining Useful Service Life of Existing Plant	3-7
	3.3	Alternative 1 – Install 50 MW Utility Substation, Reduce Steam Use and Convert Loads to 60 Hz	3-9
	3.4	Alternative 2 – Install 50 MW Substation, Eliminate Steam Use, Add CTGs and Convert Loads to 60 Hz	3-10
	3.5	Alternative 3 – Install 50 MW Substation, Eliminate Steam Use, Add Engine Generand Convert Loads to 60 Hz	
	3.6	Alternative 4 – Install 120 MW Substation, Eliminate Steam Use, Add CTGs and Convert Loads to 60 Hz	3-14
4.	-	arison of Alternatives	
	4.1	Evaluation Factors	
		4.1.1 Life Cycle Cost	
		4.1.2 Improved Reliability / Resiliency4.1.3 Greenhouse Gas Emissions / Sustainability	
		4.1.4 Capital Cost	
		4.1.5 Elimination of 25 Hz Assets	
		4.1.6 Location.	
		4.1.7 Operability	4-5
		4.1.8 Maintainability	4-6
		4.1.9 Stakeholder Impact / Marketability	
	4.2	Evaluation Matrix	
5.		ng Plan	
	5.1	Basis of Phasing	
	5.2	Power Inventory	
6.	Recon	nmendations	6-1

Appendixes

Α	Asset Lists
В	Site Layouts
С	Summary of Alternatives
D	Life Cycle Costs
E	Operation and Maintenance Costs
F	Sensitivity Analysis
G	Preliminary Cost Estimate
Н	Phasing Diagrams
I	Financing Options for Power Master Plan Alternative

Tables

ES-1	Evaluation Matrix	3
ES-2	Alternative 3 Summary	4
1-1	Guiding Principles	1-2
1-2	Key Components and Subcomponents	1-3
2-1	Generators Connected to the SWBNO Power Distribution Network	2-2
2-2	Frequency Converters Connected to SWBNO Power Distribution Network	2-3
2-3	Electric Demand Assets by Classification	2-6
2-4	Electric Generating Assets by Classification	2-8
2-5	Total Required Generation Capacity by Classification	2-10
3-1	Alternative Requirements	3-1
3-2	Mitigation of Cooling Water Cross-Connection (as described in June 2019 mitigation plan)	3-2
3-3	Drainage Pump Station Upgrades	3-5
3-4	Alternative 0 Solutions	3-7
3-5	Alternative 1 Solutions	3-9
3-6	Alternative 2 Solutions	3-10
3-7	Alternative 3 Solutions	3-13
3-8	Alternative 4 Solutions	3-15
4-1	Evaluation Factors and Associated Points	4-1
4-2	Life Cycle Cost Evaluation	4-3
4-3	Improved Reliability / Resiliency Evaluation	4-3
4-4	Greenhouse Gas Emissions / Sustainability Evaluation	4-4
4-5	Capital Cost Evaluation	4-4
4-6	Elimination of 25 Hz Assets Evaluation	4-5
4-7	Location Evaluation	4-5
4-8	Operability Evaluation	4-6
4-9	Maintainability Evaluation	4-6
4-10	Stakeholder Impact / Marketability Evaluation	4-7
4-11	Evaluation Matrix	4-7
5-1	Phasing Plan Solutions	5-1
Figure	es es	
2-1	Power Master Plan Area Boundaries	2-2
2-2	Power Master Plan Electric Feeder Routes	
2-3	SWBNO 24, 25 and 60 Hz Power Distribution Network	
2-4	Power Master Plan Asset Classification Distribution	
2-5	Total Electric Demand Assets by Classification	2-8

Power Master Plan Report

2-6	Total Reliable Generation by Classification	2-9
3-1	Alternative 0 Proposed Generation Assets	3-8
3-2	Alternative 1 Proposed Generation Assets	3-10
3-3	Alternative 2 Proposed Generation Assets	3-12
3-4	Alternative 3 Proposed Generation Assets	3-14
3-5	Alternative 4 Proposed Generation Assets	3-16
5-1	Existing Power System Asset Schematic with Power Highways	5-4
5-2	25 Hz Power Inventory, Largest 25 Hz Generator Out of Service	5-6
5-3	60 Hz Power Inventory, Largest 25 Hz Generator Out of Service	5-6
5-4	25 Hz Power Inventory, Largest 60 Hz Generator Out of Service	5-7
5-5	60 Hz Power Inventory, Largest 60 Hz Generator Out of Service	5-7
5-6	25 Hz Power Inventory Largest 25 Hz Generator Out of Service, Current State	5-8

Abbreviations, Acronyms, and Definitions

CEMS	continuous emissions monitoring system
СО	carbon monoxide
CO ₂ e	carbon dioxide equivalent
СР	Contract Package
CTG	Combustion Turbine Generator - An electric generator coupled to a combustion turbine as the prime mover - Current units are CTG-5 (25 Hz) and CTG-6 (60 Hz).
CWP	Carrollton Water Treatment Plant
Data Historian	Electronic data collection and storage system
Diesel Engine Generator	Backup diesel generators located around the SWBNO power network. These units have blackstart capabilities due to local fuel oil storage on site.
Diversity Factor	Percentage of maximum demand compared to maximum generating capacity.
DPS	Drainage Pump Station
Drainage Pump Station Demand	Power required by pumps at drainage pump stations located at various locations throughout the city.
Dual Fuel	Ability of equipment to operate on two types of fuel. (In this case natural gas and diesel).
EMD	Electro-Motive Diesel Generator – Current units are EMD 01, 02, 03, 04, and 05
Feeders	Medium- and low-voltage cables that connect the power generating sources to the loads or users in the power network.
Firm Generating Capacity (N-1)	Generating capacity of a network of generating units, if the largest unit is unavailable.
Frequency Changer / Converter	Equipment designed to convert the frequency of electricity from 60 Hz to 25 Hz, so the energy can be utilized by existing loads that operate at 25 Hz (conversion from 25 Hz to 60 Hz is also possible).
Fuel Oil	Common source of liquid fuel to operate generating assets. Sometime used synonymously with diesel fuel, which is stored on site in a tank near the generator.
Generator	SWBNO owned equipment that generates electricity for the SWBNO Power Distribution Network.
GHG	greenhouse gas
GWh	gigawatt-hour(s)
HMGP	Hazard Mitigation Grant Program

PPS0122201258NWO v

Hz	hertz
IPP	Independent Power Producer
Island Mode Operation	Operation of the SWBNO Power Generation and Distribution Network, while disconnected from the utility (i.e., independent from Entergy of New Orleans).
kV	kilovolt(s), a measure of electric potential
LCC	Life Cycle Cost - Total cost of ownership and operation over 30 years, inclusive of construction cost, purchased fuel and electricity, operation, maintenance and othe expenses.
Load/Demand	Equipment on the SWBNO Power Distribution Network that requires power to operate (stormwater drainage pumps, potable water pumps, sewage pumps).
Maximum generating capacity	Net amount of power available for use beyond the auxiliary loads of a generating unit.
MW	megawatt(s), a measure of power
MWh	megawatt-hour(s), a measure of electric energy equivalent to power consumption of one megawatt per hour
MVA	megavolt ampere(s), a measure of apparent power in an electrical system
Nameplate generating capacity	Originally-designed capability of a generator connected to a prime mover. Does not consider any limitations which may be imposed by other critical system components such as auxiliary mechanical equipment, power distribution systems or controls.
Natural Gas	Common source of fuel to operate generating assets. Natural gas is purchased from the local utility.
NOx	nitrogen oxide
Old City Drainage	The upriver portion of New Orleans bounded by the parish line between Orleans Parish and Jefferson Parish to the West, the Mississippi River to the South, Lake Ponchartrain to the North, and the Industrial Canal to the East.
PFC	Plant Frequency Changer
psig	pound(s) per square inch gauge
Redundancy	The duplication of critical components or functions of a system to increase reliability. Redundancy prevents a larger system outage from occurring as the result of a single component failure.
Reliability	Ability of a system or component to reliably and consistently serve its intended purpose.
Reliable Capacity	The expected output from a system or component considering present day condition and external limitations which may be imposed by other critical system components such as auxiliary mechanical equipment, power distribution systems or controls.

vi PPS0122201258NWO

Resiliency	An ability to recover from or adjust easily to change.
RFC	Rotary Frequency Changer
RICE	reciprocating internal combustion engine
SCADA	Supervisory Control and Data Acquisition System
SFC	Static Frequency Changer
STG	An Electric Generator coupled to a Steam Turbine as the prime mover - Current units are STG-1, STG-3, and STG-4 (all 25 Hz).
Substation	Electrical infrastructure and equipment used to transform high voltage electrical power to medium or low voltage power for distribution to consumers.
Sustainability	For the purposes of this plan, sustainability refers to a focused mitigation or reduction of environmental impact.
SWBNO Power Distribution Network / System	All of the SWBNO-owned assets connected via a complex system of feeders (generators, frequency convertors, pumps, etc.).
Total Reliable Generating capacity	The sum of the reliable generating capacities of a network of generating units.
WPC	West Power Complex

PPS0122201258NWO vii

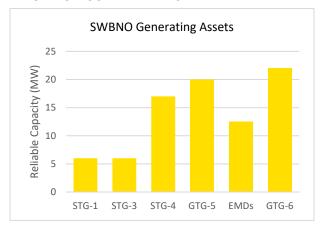
Executive Summary

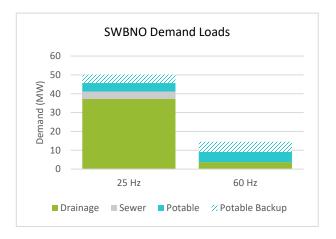
<u>STUDY OBJECTIVE:</u> Identify, evaluate, and select the most beneficial alternative that addresses the goals included in the project Problem Statement.

STUDY RESULTS: The most beneficial alternative considers: (1) A new Entergy substation, which acts as the single interconnection point for all SWBNO demand loads; (2) Elimination of steam use for power generation; (3) Retirement of all 25 Hz generating assets, and addition of new 60 Hz generating assets; and (4) Conversion of all demand loads to 60 Hz.

EXISTING SYSTEM

The Sewerage and Water Board of New Orleans (SWBNO) is the agency responsible for the reliable operations and maintenance of three utility systems which are critical to the residents of New Orleans. These systems include drinking water treatment and pumping, sewer collection and treatment, and stormwater drainage. Each system requires a reliable and resilient source of electric power to operate effectively. Loss of electric power to any segment of these systems can result in conditions that compromise the health and safety of the residents of New Orleans. Currently, energy is provided by two main sources:


- SWBNO self-generation: SWBNO Power Distribution Network (25 Hz and 60 Hz)
- Entergy of New Orleans: Multiple connection points to purchase 60 Hz energy and natural gas.


PROBLEM STATEMENT

The Sewerage and Water Board of New Orleans is conducting a study to assess the needs and capabilities of the existing power generation and distribution network with a goal of defining an economic, efficient, and sustainable path toward modernizing and improving its electrical power system to meet all power demands with adequate redundancy and robust resiliency. The study results will be presented in a Power Master Plan, which will outline a path to the most reliable, resilient, and efficient energy use through a combination of self-generation and electricity purchase. The Power Master Plan will emphasize elimination of the current cooling water crossconnection and steam production, transitioning away from 25 Hz to 60 Hz power production and use.

SWBNO POWER DISTRIBUTION NETWORK

EXISTING ASSET INVENTORY

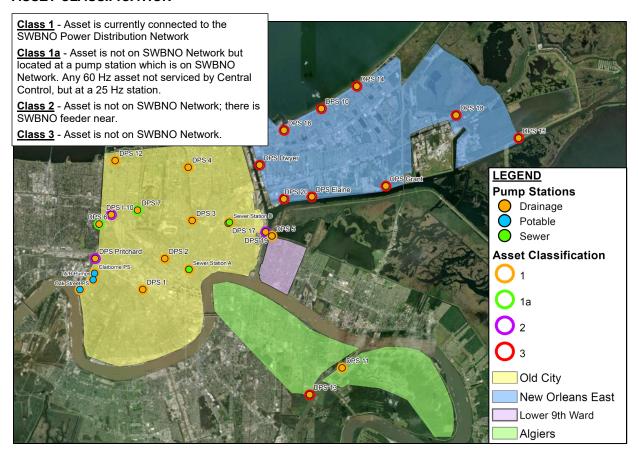
25 Hz

Total Generation = 61.5 MW

Total Connected Demand Loads = 51.6 MW

Max Instantaneous Demand Loads = 50.1 MW

60 Hz


Total Generation = 22 MW

Total Connected Demand Loads = 16.6 MW

Max Instantaneous Demand Loads = 9.1 MW

ASSET CLASSIFICATION

RECOMMENDED GENERATION CAPACITY

This study focuses on the emergency scenario when Entergy is unavailable and all critical assets must be powered by SWBNO generating assets. This scenario is referred to as **Island Mode Operation**. In Island Mode, SWBNO should maintain enough generation capacity to meet the Total Required Generation Capacity even when the largest generation asset is unavailable due to a planned or unplanned outage. This is referred to as the Firm Reliable Generation Capacity.

Based on an evaluation of current loads and demands, it is recommended that the Firm Reliable Generation Capacity be maintained at a minimum of 77.3 megawatts (MW). Jacobs further recommends that SWBNO consider provisions for future generation capacity to allow for the connection of additional pumping stations that are geographically located near the existing Power Distribution Network feeders (Asset Classification 2). This will require a Future Firm Reliable Generation Capacity of 88.3 MW.

The following Firm Reliable Generation Capacity values have been used to develop the Power Master Plan alternatives:

- Minimum Present Firm Reliable Generation Capacity = 77.3 MW
- Minimum Future Firm Reliable Generation Capacity = 88.3 MW

ALTERNATIVES EVALUATION

Alternative 0:
Baseline

Alternative 1:
New Substation,
Reduce steam use;
Convert demand to 60 Hz

Alternative 2:
New Substation,
Eliminate steam use
Three new 22 MW CTGs
Convert demand to 60 Hz

Alternative 3:
New Substation,
Eliminate steam use
Three new 18 MW RICE
units
Convert demand to 60 Hz

Alternative 4:
New Larger Substation,
Eliminate steam use
Three new 22 MW CTGs
Convert demand to 60 Hz

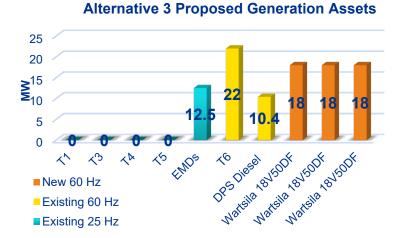
Jacobs developed five alternatives that meet the key components included in the SWBNO Power Master Plan Problem Statement. The alternatives were developed based on the evaluation of feasible options including Alternative 0, which is defined as a base case with the addition of essential upgrades to ensure ongoing and reliable operations of the Carrollton Water Plant to meet the basic threshold of reliable power.

During the Alternative Review Workshop with Jacobs and SWBNO on November 6, 2019, each alternative was evaluated and ranked against one another using an evaluation matrix. The results are presented in Table ES-1.

Table ES-1. Evaluation Matrix

Evaluation Factors	Max	Evaluation Points Assigned to Each Alternative				
Evaluation Factors	Points	0	1	2	3	4
Life Cycle Cost	35	0	35	28	32	18
Reliability /Resiliency	25	0	12.5	25	25	25
GHG Emissions /Sustainability	10	0	6	8	10	8
Capital Cost	5	5	3.5	2.5	2.5	2.5
Elimination of 25 Hz	5	0	2.5	5	5	5
Location	5	0	4	4	4	5
Operability	5	0	0	2.5	5	2.5
Maintainability	5	0	0	5	2.5	5
Stakeholder Impact	5	0	0	5	5	5
TOTAL	100	5	63.5	85	90.5	75.5
	•					
Capital Cost		\$508,271,000	\$535,360,000	\$575,672,000	\$573,026,000	\$579,040,000
Life Cycle Cost		\$1,071,115,000	\$812,657,000	\$830,146,000	\$828,190,000	\$886,671,000
LCC Savings		\$0	\$258,458,000	\$240,969,000	\$242,925,000	\$184,444,000
GHG Emissions (tons	/yr)	120,232	79,832	78,116	77,788	77,820

tons/yr = tons per year


Based on this evaluation, Alternatives 2 and 3 are the best available options, with a reciprocating internal combustion engine (RICE) engine solution (Alternative 3) assessed as slightly more favorable than a combustion turbine solution, primarily due to cost and operational flexibility.

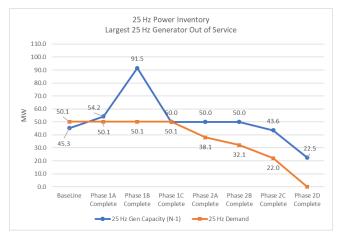
RECOMMENDED ALTERNATIVE

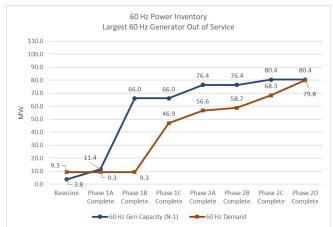
In Alternative 3, purchased utility power is the primary source of energy via a dedicated substation, and SWBNO Generation is needed only during significant rain events or when utility power is unavailable. This alternative eliminates all existing steam turbine generators and adds three new engine generators at a new West Power Complex.

Table ES-2 outlines how Alternative 3 addresses the Key Components of the study.

Table ES-2. Alternative 3 Summary

Key Component	Solution
Public Welfare	
Cooling Water System	Cross-connection would be eliminated by the retirement of all existing cross-connected equipment.
Island Mode Operation	The capacity of the new West Power Complex will exceed the system load by about 5 MW even if one generator is out of service.
Greenhouse Gas Emissions and Pollution Control	This option produces an estimated 77,800 tons per year of GHG emissions compared to 120,200 tons per year with Alternative 0.
	Each option will comply with applicable state and federal laws for emissions from generating equipment.
Efficiency, Sustainability, and	Cost of Operation
Reduced Steam Generation /	Retire all steam generation and use.
Natural Gas Purchase	Natural gas purchase would only be required when power demand exceeds substation capacity and SWBNO generating assets are running, or in an emergency situation when Entergy is not available.
Equipment Selection	
Generating Assets	Install three new Wartsila 18V50DF dual fuel engine generators with an approximate capacity of 18 MW each.
	Retire STG-1, STG-3, STG-4, Combustion Turbine Generator No. 5 (CTG-5), and boiler plant.
Frequency Conversion	Install three 25 MW capacity static frequency changers (SFCs) (75 MW total capacity) to allow for retirement of T-1, T-3, T-4, T-5, and the boiler plant after new 60 Hz generators are installed but before drainage pump systems are converted to 60 Hz.
Electric Demand Assets	Replace all 25 Hz pump motors with new 60 Hz motors and gearboxes installed above maximum considered flood elevation. This work will need to be phased over multiple years.
SWBNO Network Feeders	All remaining 6.6 kV feeders in the SWBNO Power Distribution Network not previously replaced in the Hazard Mitigation Grant Program project will be replaced with new 13.8 kV feeders.
Substation Capacity	
Entergy Feeders	Install a new Entergy substation with 50 MVA total capacity
	All SWBNO generating assets become backup only for when Entergy is not available, or demand exceeds substation capacity.
CTG = combustion turbine gene	erator; kV = kilovolt(s); MVA = megavolt(s) ampere; STG = steam turbine generator

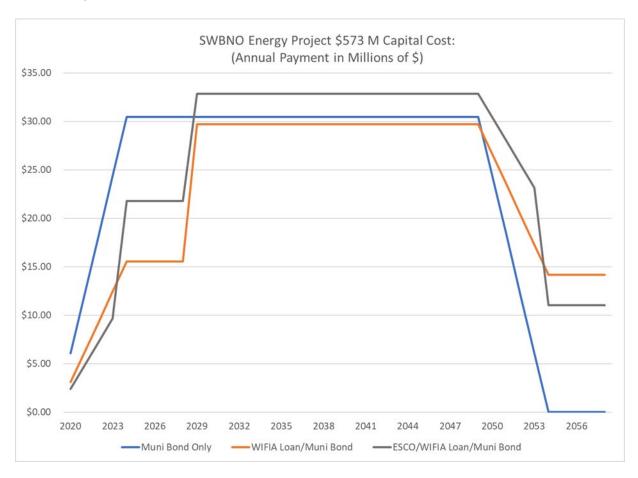



POWER SYSTEM PHASING

The phasing plan presented in this report considers installation of the new West Power Complex, including a new substation, new generators, and new SFCs with a clear point of demarcation before the rest of the assets are transitioned. The strategy is adaptable and may need to be modified to accommodate the availability of funding, coordination with other related projects, availability of qualified local contractors, and many other factors which are currently unknown.

Phase	Description	Detail
Baseline	Existing power inventory, considering the operational status of all assets in November 2019	
Phase 1A	Installation of 25 MW SFC	Add one 25 MW SFC.
Phase 1B	Construction of West Power Complex	Add two more 25 MW SFCs (one standby); install T7, T8, T9, and 60 Hz ring bus.
Phase 1C	Retire All 25 Hz Steam Power Generation Turbines	Remove T1, T3, T4, and T5 and all associated equipment.
Phase 2A	Convert Drainage Pump Stations to 60 Hz	Connect Diesel Generators at Drainage DPS-6 and DPS-7; convert DPS-6, -7 (partial), -12, and -17 (partial) to 60 Hz.
Phase 2B	Convert Drainage Pump Stations to 60 Hz and DPS-5 to an Independent Station	Convert the rest of DPS-7 to 60 Hz; connect Pritchard and I-10; Convert DPS-5 to an independent station.
Phase 2C	Convert Drainage Pump Station to 60 Hz	Connect Diesel Gen at DPS-19; Convert DPS-1 and DPS-2 (partial) to 60 Hz.
Phase 2D	Convert Drainage Pump Station to 60 Hz and Retire Frequency Changers	Convert the rest of DPS-2, DPS-3, DPS-4, Panola, and Claiborne pump stations to 60 Hz; retire the Carrollton frequency changers and the Station D frequency changers.

The following graphs summarize the status of the 25 Hz assets and 60 Hz power inventory through the proposed phases of the power system. The Power Inventory Graphs represent the SWBNO available generation capacity when considering the largest 25 Hz generator out of service and the largest 60 Hz generator out of service. The proposed phasing shows that there is currently a generation capacity deficit, but that excess capacity is achieved and maintained through the multiple construction phases.



PPS0122201258NWO ES-5

PROJECT FINANCING

Options for project financing are presented in Appendix I, and summarized in the graph below for Alternative 3.

RECOMMENDATIONS/NEXT STEPS

Based on the findings presented in this Power Master Plan report, the following items are recommended as next steps:

- Finalize negotiations on the new Entergy substation, and begin construction.
- Complete the work that is currently in progress:
 - 1370A Switchgear / Transformer Project
 - Procurement and installation of a new 25 MW SFC
 - Upgrades to T-6 to allow for cold weather operation
- Begin preparation of performance specifications for major long-lead time equipment.
- Prepare a conceptual level design to accommodate updated cost estimates of preferred alternative to be used in financing discussions.
- Refine phasing of preferred alternative to mitigate loss of T-5.
- Pursue project financing options discussed in the Financing Options for Power Master Plan Alternatives technical memorandum presented in Appendix I.

1. Introduction

1.1 Background

The Sewerage and Water Board of New Orleans (SWBNO) is the agency responsible for the reliable operations and maintenance of three utility systems which are critical to the residents of New Orleans. These systems include drinking water treatment and pumping, sewer collection and treatment, and stormwater drainage. Each system requires a reliable and resilient source of electric power to operate effectively. Loss of electric power to any segment of these systems can result in conditions that compromise the health and safety of the residents of New Orleans.

At the request of SWBNO, Jacobs developed and evaluated alternatives for power generation and Power Distribution Network improvements supporting the water, sewer, and drainage systems currently powered from the existing Carrollton Power Plant. The existing power distribution infrastructure is highly complex and extends to various pumping stations throughout the City. Many of the system components were constructed more than 100 years ago and are in immediate need of upgrades, modifications or replacement. The goal of the study is to identify the optimal strategy to improve the long-term reliability, resiliency, efficiency and sustainability of electric power to these critical systems.

To commence the study, Jacobs collected and reviewed the following historical studies and design documents prepared by various entities working on the SWBNO Power System:

- SWB Phase I Power Study, 1974 Ford, Bacon, Davis
- SWB Phase II Power Study, 1974 Ford, Bacon, Davis
- Power Study, 1994 CH2M HILL
- Power System Bid Package, 2000 CH2M HILL
- CP-1372 (T5) Specifications & Drawings, 2015 Black and Veatch
- CP-1373 (T3 Refurbishment) Specifications & Drawings, 2015 Black and Veatch
- Substation Estimate, 2016 Entergy of New Orleans
- City of New Orleans Root Cause Analysis Draft Report, 2018 ABS Group
- Power Alternatives Assessment, 2018 Jacobs
- Drainage System Conditions Assessment, 2018 Veolia
- Cooling Water System Analysis and Results, 2019 Jacobs
- DRAFT Resilience-Inclusive Cost Benefit Analysis of Microgrids for New Orleans, LA, 2019 Sandia National Laboratory

Additionally, Jacobs facilitated discussions with SWBNO operations staff, and attended tours of the power house and drainage pump stations (DPS) as noted:

- Discussions with SWBNO Boiler Plant Operations Staff
- Discussions about ongoing and upcoming projects in the SWBNO system
- Discussion on SWBNO Overall Operations with SWBNO's Chief of Operations
- Discussion on Drainage System and DPS Emergency Generation with SWBNO Engineering
- Tour of DPS 6, DPS 7, DPS 17 (Pump Station D), Panola Station
- Tour of T-6, Electro-Motive Diesel (EMD) Generators, Power House, High-Lift Building, and Low-Lift Building

Review of past studies identified that most of the ideas still being assessed today have been evaluated previously, often more than once. The goal of this Power Master Plan is not to repeat work from prior studies. Rather, the intent is to leverage the options previously identified, and advance the assessment of those options to confirm a feasible and optimal path forward for SWBNO, incorporating current inputs and requirements provided by SWBNO as of 2019.

The most recent pre-feasibility power study conducted by Jacobs demonstrated that options which allow for SWBNO to transition from a primary system of power generation to a primary system of power purchase provide the best overall value in terms of life cycle cost (LCC). Therefore, the alternatives

studied in this report will focus more specifically on feasible solutions that include reliable utility power from Entergy of New Orleans (Entergy), while still maintaining the ability to independently generate enough power to operate all critical systems in emergency situations or when utility power from Entergy may not be available.

<u>Note:</u> During this study, Combustion Turbine Generator Number 5 (CTG-5) was operational and was used in the evaluation of alternatives. On December 14, 2019, after the alternatives had been evaluated, CTG-5 experienced a failure event and is currently no longer operational. Due to the timing of this event, the impacts of this on the power generation portfolio and future are not evaluated in this study. For the purposes of this Power Master Plan, it is presumed that the lost generating capacity will be replaced.

1.2 Power Master Plan Problem Statement

During the Power Master Plan project kickoff meeting on May 29, 2019, the project purpose was established in the form of a problem statement with direct input from SWBNO. The following project Problem Statement provides a key reference point and series of guiding principles for the study.

The Sewerage and Water Board of New Orleans is conducting a study to assess the needs and capabilities of the existing power generation and distribution system with a goal of defining an economic, efficient, and sustainable path toward modernizing and improving its electrical power system to meet all power demands with adequate redundancy and robust resiliency. The study results will be presented in a Power Master Plan which will outline a path to the most reliable, resilient, and efficient energy use through a combination of self-generation and electricity purchase. The Plan will emphasize elimination of the current cooling water cross-connection and steam production, while transitioning away from 25 Hz to 60 Hz power production and use.

Based on the Problem Statement and further discussion with SWBNO during the Project Planning Review meeting on July 10, 2019, Jacobs prepared the following list of Guiding Principles and their relation to the Problem Statement (Table 1-1).

Table 1-1. Guiding Principles

No.	Guiding Principle	Relative to Problem Statement
1	Reliability and resiliency of the proposed solution is critical.	Meet all power demands with adequate redundancy and robust resiliency.
2	The proposed solution must include a practical construction plan. It is understood and expected that modifications to existing systems will need to be phased to maintain minimum reliability threshold of the overall system throughout construction.	Define an economic, efficient, and sustainable path toward modernizing and improving its electric power system.
3	Construction cost, energy efficiency, LCC and sustainability are important criteria that will help determine which solution is optimal, but	Outline a path to the most reliable, resilient, and efficient energy.
	not at the expense of reliability, resiliency or constructability.	Meet all power demands with adequate redundancy and robust resiliency.
4	The recommended solution must include provisions to eliminate the current cooling water cross connection. The proposed construction phasing should allow for this work to be complete within 5 years.	Emphasize elimination of the current cooling water cross-connection and steam production.
5	The recommended solution must include provisions to maintain reliability in the absence of utility power (from Entergy) as well as natural gas fuel supply to the plant (i.e., all equipment must be capable of operating on back-up fuel stored on site.)	Outline a path to the most reliable, resilient, and efficient energy use through a combination of self-generation and electricity purchase.
6	The firm capacity of the plant shall be sized to meet the peak demand of any realistic operating scenario that could take place with the loads	Meet all power demands with adequate redundancy and robust resiliency.
	presently connected. Firm capacity for this project will be defined as the generation capacity of the plant with the largest generator unavailable (N-1).	Assess the needs and capabilities of the existing power generation.
7	Prior studies have recommended a migration from 25 Hz power production to 60 Hz power production. This migration remains a key	Transition from 25 Hz to 60 Hz power production

1-2 PPS0122201258NWO

Table 1-1. Guiding Principles

No.	Guiding Principle	Relative to Problem Statement
	objective, but not at the expense of reliability, resiliency, or constructability.	and use while meeting all power demands with adequate redundancy and robust resiliency.
8	SWBNO generally has no preference regarding the combinations of self-generation equipment systems or electric utility interconnections to be evaluated or proposed. Jacobs will provide a brief design narrative to explain why the alternatives selected for the evaluation are the most beneficial.	Outline a path to the most reliable, resilient, and efficient energy use through a combination of self-generation and electricity purchase.

Jacobs organized the Guiding Principles into a table of Key Components and Subcomponents (Table 1-2). A version of this table was prepared for each Alternative, to clearly identify how the specific solutions meet the goals of the Problem Statement.

Table 1-2. Key Components and Subcomponents

Key Component	Subcomponent	Description
	Cooling Water System	Each alternative must eliminate the cooling water cross-connection at the CWP. This is a requirement of the Louisiana Department of Health.
Public Welfare	Island Mode Operation	Each option must include provisions for 100% Island Mode self-generation to reliably operate all critical systems in a design event in the absence of purchased utility power.
	Reduced Greenhouse Gas Emissions and Pollution	Each option must incorporate provisions for reduced greenhouse gas (GHG) emissions compared to the current baseline emission. Each option must comply with applicable state and federal laws for emissions from generating equipment.
Efficiency, Sustainability, and Cost of Operation	Reduced Steam Generation / Natural Gas Purchase	Each option must consider a reduction in steam generation. Steam is generated in the boiler house by burning natural gas and / or diesel fuel. Fuel costs can be reduced by reducing steam production.
	Generating Assets	Each option studied which combines all loads onto a single 60 Hz Power Distribution Network must maintain a Firm Reliable Generation Capacity of 77.3 megawatts (MW).
		Any new generating equipment must produce power at 60 Hz and have dual fuel operating capabilities.
Equipment	Frequency Conversion	The transition plan from 25 Hz generation and use to 60 Hz generation and use may require the inclusion of a frequency converter.
Equipment Selection	Electric Demand Assets	To meet SWBNO's long-term system goals, electric demand loads at the drainage pump stations must be converted to 60 Hz and raised above the historic high-water line.
	Electric Demand Assets	The recommended solution should include any fuel storage or handling modifications required to allow for 7 days of continuous operation without fuel delivery.
	SWBNO Network Feeders	All existing 6.6 kilovolt (kV) feeders in the SWBNO Power Distribution Network will be replaced with 13.8 kV feeders.
Substation Capacity	Entergy Feeders	Each option must consider utility interconnection to a new industrial-grade Entergy substation instead of connection to local residential or commercial utility feeders.

1.3 Evaluation Approach

This report documents Jacobs' effort in identifying, evaluating, and selecting the most beneficial alternative which addresses the goals included in the project Problem Statement.

Jacobs' review of SWBNO system assets facilitated the identification of five alternatives, which generally consider different types and sizes of generators, substation capacity, and incorporation or retirement of

PPS0122201258NWO 1-3

existing assets. With SWBNO's input, an alternative was selected based on pre-determined evaluation factors. The evaluation factors include monetary and non-monetary aspects that align with the project Problem Statement. Finally, a phasing plan was prepared, which outlines a realistic sequence of construction for the selected alternative.

The evaluation approach for the Power Master Plan Alternatives included the following activities further described in the remainder of this report:

- Perform a right-sizing analysis of the SWBNO power system. The intent of the right-sizing analysis is to establish the optimal configuration and size range for the new equipment with consideration of the current and anticipated connected loads.
- Develop the alternatives to be evaluated in the study. The list of alternatives includes a "business as
 usual" case as a baseline. The other alternatives include proposed updates to the power system to
 accomplish the goals in the Problem Statement.
- Compare Alternatives. Each alternative has been evaluated based upon several factors which are
 deemed important to SWBNO and in alignment with the objectives of the Problem Statement. An
 Evaluation Matrix, including all evaluation factors, scores, and alternatives, allows for a quantifiable
 method of determining the most beneficial alternative. Upon evaluation and discussion with SWBNO,
 the successful Alternative has been selected.
- Prepare a Phasing Plan for the selected Alternative.

1-4 PPS0122201258NWO

2-1

2. Right-sizing Analysis

Entergy, the sole electric and natural gas utility in the city of New Orleans, has stated that it cannot guarantee power during significant tropical weather events. To maintain reliable critical operations, SWBNO requires adequate power to start and operate the potable water, sewer, and drainage pumps. Operation of the existing SWBNO network in Island Mode allows SWBNO to provide Orleans Parish residents confidence that critical services will still operate if the main utility, Entergy, is out of service. To confidently operate in Island Mode, the SWBNO system assets including generators, pumps, frequency converters, and feeders must be reliable and resilient.

The first step in providing a reliable and resilient system is confirming that there is sufficient Generation Capacity available to provide power to all the loads in the system. A clear understanding of the existing connected loads and power generating assets in the SWBNO Power Distribution Network is necessary to determine a recommended Total Required Generation Capacity, which is the basis of each Alternative evaluated in this Power Master Plan. Jacobs completed the following tasks to determine the Total Required Generation Capacity of the SWBNO generating assets:

- Compile a comprehensive inventory of all existing SWBNO assets including generators, pumps, frequency converters, and feeders. The inventory includes a description of the asset, its current location, year installed, capacity, and frequency.
- Identify system classification categories and separate the existing SWBNO assets based on their location in the SWBNO Power Distribution Network.
- Calculate the Total Required Future Generation Capacity of the Carrollton Power Plant. This capacity
 considers recommended changes in the SWBNO Power Distribution Network, such as the conversion
 of 25 Hz loads to 60 Hz, the connection of additional drainage pump stations to the network, and the
 disconnection of others.
- Calculate the minimum Firm Reliable Generation Capacity, which considers the necessary redundancy required for a resilient system.

2.1 Inventory of Existing Assets

Existing SWBNO power assets are located across Orleans Parish in the following areas:

- Old City
- Algiers
- New Orleans East
- Lower 9th Ward

This Power Master Plan study focuses on SWBNO assets that are currently connected to or located near the existing SWBNO Power Distribution Network. Most of these pump stations fall within the Old City area. Old City is defined as the upriver portion of New Orleans bounded by the parish line between Orleans Parish and Jefferson Parish to the west, the Mississippi River to the south, Lake Pontchartrain to the north, and the Industrial Canal to the east. The drainage pump stations included in this area are the original and oldest drainage pump stations in the City. When these pump stations were originally designed and installed in the early 1900s, AC power in the United States was not yet standardized to 60 Hz frequency, and the pumps in the New Orleans system were designed to utilize power at 25 Hz frequency. Now that the United States are standardized to 60 Hz power, it is difficult and often costly to maintain the 25 Hz equipment. Several of the existing pump stations have only 25 Hz-powered equipment, while others have a combination of equipment using both 25 and 60 Hz. Only DPS 19 is solely 60 Hz-powered.

Figure 2-1 identifies the pump stations within the areas of Orleans Parish.

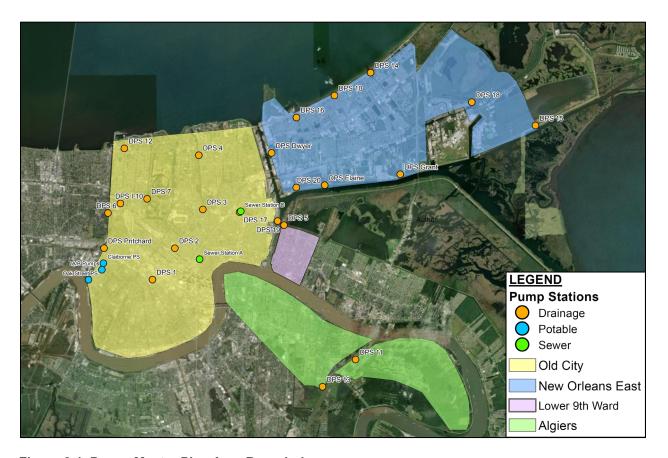


Figure 2-1. Power Master Plan Area Boundaries

The existing SWBNO Power Distribution Network includes a network of feeders across the Parish that connect the Carrollton Power Plant to drainage pump stations, sewer pump stations, potable water pumping stations, river intake stations, and frequency changers. Loads currently connected to the SWBNO Power Distribution Network primarily run on 25 Hz power distributed from the Carrollton Power Plant. The Power Distribution Network also includes a smaller number of loads at specific pump stations that operate through a local 60 Hz connection to Entergy. Existing rotary-type frequency changers, located at the Carrollton Plant (Plant Frequency Changer), Drainage Pump Station 17 (also referred to as Pump Station D or Central Yard), and the Carrollton Frequency Changer allow for a limited amount of 60 Hz power from Entergy to be converted to 24 Hz power. Note that 24 Hz power (converted from the rotary frequency converters) and 25 Hz power (generated from the existing turbine generators) are different and cannot be combined. Many of the assets were originally installed in the early 1900s and are still operating today.

Tables 2-1 and 2-2 summarize the existing generating assets and frequency converters which provide power to the critical load assets throughout the current SWBNO Power Distribution Network.

Table 2-1. Generators Connected to the SWBNO Power Distribution Network

Hz	Location	Description	Nameplate Capacity (MW)	Reliable Capacity (MW)	Year Installed
25	Carrollton Power Plant	STG-1	6	6	1913
25	Carrollton Power Plant	STG-3	15	6	1928
25	Carrollton Power Plant	STG-4	20	17	1917/1954
25	Carrollton Power Plant	CTG-5	20	20	1963
25	Carrollton Power Plant	EMD 1-5	12.5	12.5	2018

2-2 PPS0122201258NWO

Table 2-1. Generators Connected to the SWBNO Power Distribution Network

Hz	Location	Description	Nameplate Capacity (MW)	Reliable Capacity (MW)	Year Installed
60	Carrollton Power Plant	CTG-6	22	22	2010

Note: Reliable Capacity considers known constraints to the existing generators. For the purposes of this study, it is assumed that the constraints on CTG-6 (such as cold weather operation and switchgear bus limits) and EMDs (such as shore power, fuel delivery and oil make-up) have been corrected.

Table 2-2. Frequency Converters Connected to SWBNO Power Distribution Network

Hz	Location	Description	Nameplate Capacity (MW)	Reliable Capacity (MW)	Year Installed
25/60	Plant Frequency Changer (Carrollton Power Plant)	PFC-1	3.75	3.75	
24/60	Carrollton Frequency Changer	CFC-1	6	6	
24/60	Carrollton Frequency Changer	CFC-2	2.5	2.5	
24/60	Station D (DPS 17)	FC-3	6	6	
24/60	Station D (DPS 17)	FC-4	6	6	
25/60	Station C (Sewage)	FC-1	Eraguanay aanyarta	ers at Station C and a	n the Westbank
25/60	Station C (Sewage)	FC-2	Frequency converters at Station C and on the Westba are SWBNO owned assets, but located outside of th		outside of the
25/60	Westbank	FC-3	Old City area, therefore not included in this stud		

To achieve high reliability of power to the critical infrastructure, both the power generation system and the distribution feeders providing that power must be robust. SWBNO assessed their power feeder system in the past, and some upgrades have been made. Recent testing conducted in 2017 showed a high percentage of the existing feeder system did not pass industry standard quality tests, and feeder failures are still occurring and disrupting power supply to the critical loads. The older feeders in the system are rated for 6.6 kV, while the more recently installed feeders are rated at a minimum of 13.8 kV. It is recommended that any additions or upgrades to the Power Distribution Network include cables rated as 13.8 kV at a minimum, to allow more power to be transferred through the same lines. Figure 2-2 shows the existing feeder network connecting the generating assets to the critical load assets in the SWBNO Power Distribution Network.

PPS0122201258NWO 2-3

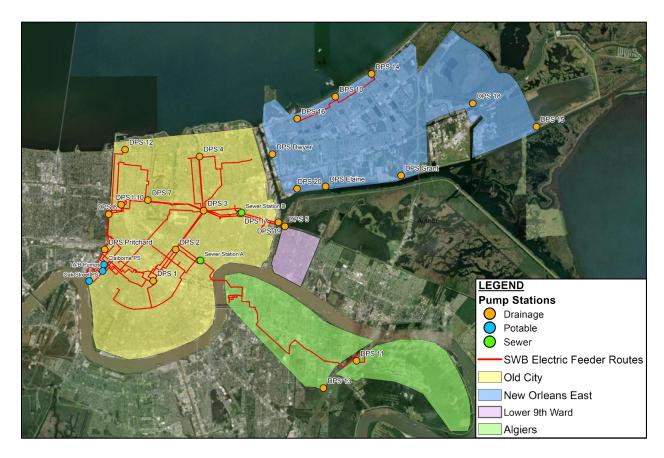


Figure 2-2. Power Master Plan Electric Feeder Routes

Presently, SWBNO's critical infrastructure includes additional 60 Hz assets (pumps) that are not connected to the feeder Power Distribution Network. These assets are fed from a nearby 60 Hz Entergy feeder with onsite backup diesel generation in most cases. The Entergy connections are via above ground residential or commercial feeds, which are generally unreliable, especially during storm events. Figure 2-3 details the highly complex network of assets (generation, loads, and feeders) connecting SWBNO's critical infrastructure. This diagram and other documents provided by SWBNO were used to prepare a consolidated asset list, which is included in Appendix A.

2-4 PPS0122201258NWO

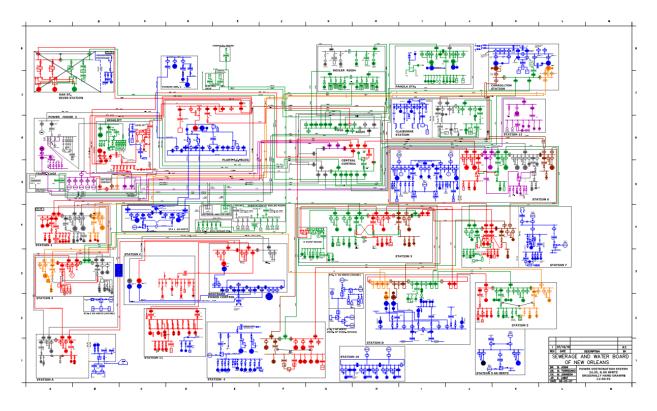


Figure 2-3. SWBNO 24, 25 and 60 Hz Power Distribution Network

2.1.1 Asset Classification

Before any alternatives can be defined, it was imperative to define the Required Generation Capacity for Island Mode operation of the SWBNO Power Distribution Network. Total demand of all electric loads (drainage, potable water, and sewage) connected to the SWBNO Power Distribution Network was identified as the basis of the system's Required Generation Capacity.

This section includes a summary of existing electric demand assets and available generating assets classified into four categories and displayed on Figure 2-4:

- Classification 1 Asset is currently connected to the SWBNO Power Distribution Network.
- Classification 1a Asset is not on SWBNO Power Distribution Network, but is installed in a pump station that is currently serviced by the SWBNO Power Distribution Network, e.g., a 60 Hz asset at a 25 Hz station not serviced by Central Control.
- Classification 2 Asset is not on SWBNO Power Distribution Network; however, there is an
 underground feeder in close proximity. Jacobs recommends planning for future addition onto the
 Power Distribution Network.
- Classification 3 Asset is not on SWBNO Power Distribution Network, and not recommended for future addition due to isolated location relative to SWBNO Power Distribution Network.

PPS0122201258NWO 2-5

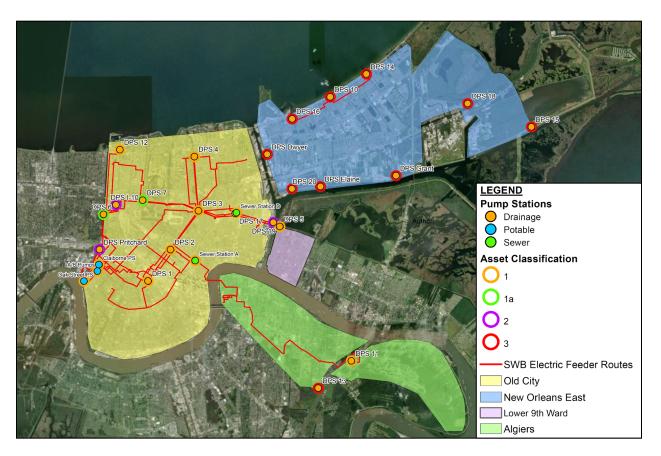


Figure 2-4. Power Master Plan Asset Classification Distribution

2.1.2 SWBNO Demand Assets

Table 2-3 summarizes the loads at each pump station and how they are currently assigned to each classification. This compilation of assets roughly differentiates between connected demand loads and maximum instantaneous demand where specific pumps do not operate at the same time as other pumps (i.e., back-up pumps).

Table 2-3. Electric Demand Assets by Classification

Classification	Hz	Location	Load (kW)	25 Hz Total (MW)	60 Hz Total (MW)
		DPS 1	4,300		
		DPS 2	3,969		
		DPS 3	6,356		
		DPS 4	4,625		
Class 1		DPS 5	3,805	50.1 max instant 51.6 connected	
Loads currently connected to		DPS 6	9,922		
the SWBNO Power	25	DPS 7	2,163		
Distribution Network		DPS 11	597		
Network		DPS 12	1,492		
		Oak Street Pump Station	1,492 max use 2,984 connected		
		Panola Pump Station	3,357		
		Claiborne Pump Station	2,685		

2-6 PPS0122201258NWO

Table 2-3. Electric Demand Assets by Classification

Classification	Hz	Location	Load (kW)	25 Hz Total (MW)	60 Hz Total (MW)	
		Sewer Station A	1,865			
		Auxiliary Allowance	2,000			
		DPS 1	1,865 max use 3,730 connected			
		Oak Street Pump Station	466 max use 932 connected			
		Panola Pump Station	1,679 max use 3,357 connected			
	60	Claiborne Pump Station	1,343 max use 2,685 connected		9.3 max demand 16.6 connected	
		Low Lift Pump Station	261 max use 522 connected			
		High Lift Pump Station	1,679 max use 3,357 connected			
		Auxiliary Allowance	2,000			
	Total	Class 1			16.6	
	Iotai			68.2		
		DPS 4	1,044			
01 4-		DPS 6	6,565			
Class 1a Loads at	60	DPS 7	1,865		14.9	
SWBNO pump		DPS 17	3,730			
stations but currently		Sewer Station A	1,715			
served by Energy feeds						
3,	Total	Class 1+1a		51.6	31.5	
	Total	Total Glass 1- Tu		8:	3.1	
Class 2		DPS 19	7,907			
Loads not on	60	DPS I-10	3,245		11.9	
SWBNO network but		DPS Pritchard	764			
close to an existing feeder	Total	Class 1+1a+2		51.6	43.4	
calsuing leeder	Total	O1400 1 · 14 · 2	95.0			

kW = kilowatt

An auxiliary allowance of 2,000 kW 25 Hz and 2,000 kW 60 Hz represents an aggregate of loads too small to tabulate separately.

An additional 24.3 MW of load at Pump Stations 10, 11, 13, 14, 15, 16, 18, 20, Dwyer, Elaine, Grant, Monticello, Industrial Avenue, and all Underpass Stations are included in Classification 3. As noted above, Classification 3 assets are not currently connected to the SWBNO Distribution Network and are not recommended for future addition due to isolated location. Figure 2-5 summarizes the total 25 Hz and 60 Hz electric demand assets by classification.

Note: It is anticipated that the existing feeders which cross the Mississippi River and the Industrial Canal (Feeder 226) will be retired in the foreseeable future, due to difficult maintainability and increased rate of failure. When those feeders are retired, assets at DPS-5 and DPS-11 will no longer be included in the demand asset allocation. However, given the uncertainty in timing of this event, they are included herein for completeness.

PPS0122201258NWO 2-7

Figure 2-5. Total Electric Demand Assets by Classification

2.1.3 SWBNO Generating Assets

Existing 25 Hz generating equipment includes STG-1, STG-3, STG-4, CTG-5, and the EMDs. The sum of the 25 Hz generation is 73.5 MW (nameplate capacity if all equipment were restored to achieve maximum operational capacity). Due to present-day system constraints and equipment conditions, Jacobs estimates that the current reliable capacity of the existing 25 Hz generating assets is less than the sum of the nameplate capacities. With input from SWBNO, the total reliable capacity of these generating assets is estimated to be approximately 61.5 MW.

Existing 60 Hz generating equipment includes CTG-6 and the backup diesel generators installed at the drainage pump stations. As currently installed, these 60 Hz generation assets all serve segregated loads and cannot be used as redundant backup for one another. The only 60 Hz generation asset currently connected to the SWBNO Power Distribution Network is the 22 MW combustion turbine generator (CTG-6) at the Carrollton Power Plant. It is recommended that the distributed generators be connected to the Power Distribution Network. Under Classification 1a, an additional 10.4 MW of 60 Hz generating assets are located at drainage pump stations which are connected to the existing 25 Hz Power Distribution Network, and can be added to the system. Classification 2 adds another 10.0 MW of distributed generation to the SWBNO system. There is another 21.6 MW of distributed generation within the Classification 3 category, but the added benefit does not outweigh the cost associated with the addition.

Table 2-4 summarizes the generating assets in the SWBNO system and how they are assigned to each classification. Figure 2-6 summarizes the total 25 Hz and 60 Hz generators by classification.

Table 2-4. Electric Generating Assets by Classification

Classification	Hz	Description / Location	Nameplate Capacity (MW)	Reliable Capacity (MW)	Total Reliable (MW)
		STG-1 / Carrollton Plant	6	6	
Class 1		STG-3 / Carrollton Plant	15	6	
Generators currently	25	STG-4 / Carrollton Plant	20	17	61.5
connected to the SWBNO		STG-5 / Carrollton Plant	20	20	
Distribution		EMDs / Carrollton Plant	12.5	12.5	
Network	60	CTG 6 / Carrollton Plant	22	22	22.0
	Total Class 1				

2-8 PPS0122201258NWO

Classification	Hz	Description / Location	Nameplate Capacity (MW)	Reliable Capacity (MW)	Total Reliable (MW)
Class 1a	60	Permanent Diesel Generator / DPS 6	7.5	7.5	10.4
Generators at SWBNO pump	60	Permanent Diesel Generator / DPS 7	2.86	2.86	10.4
stations but not connected to SWBNO system	Total	Class 1+1a			93.9
Class 2		DPS 19	4	4	
Generators not on SWBNO network but	60	DPS I-10	4.7	4.7	10.0
		DPS Pritchard	1.29	1.29	
close to an existing feeder	Total Class 1+1a+2				103.9

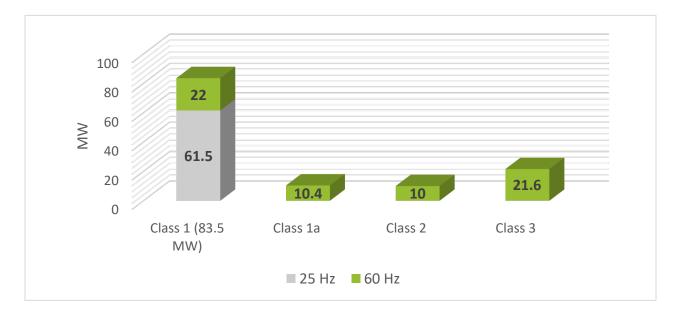


Figure 2-6. Total Reliable Generation by Classification

2.2 Total Required Generation Capacity

The Total Required Generation Capacity of the SWBNO generating assets is a critical value in the development of the SWBNO Power Master Plan because it is the base value that is used to determine the minimum Firm Reliable Generation Capacity of each alternative. The Required Generation Capacity value is based on the total load that the generating assets are expected to power at one time and is calculated by multiplying the total connected load by the SWBNO load diversity factor. The total connected load is the total capacity of all electric demand assets (Table 2-3). Since the Problem Statement requires eventual conversion of all assets to 60 Hz, the 25 Hz loads and 60 Hz loads are combined to obtain the total connected load.

Total Required Generation Capacity

= (Total 25 Hz Load + Total 60 Hz Load)x Load Diversity Factor

Load Diversity is the calculated percentage of an actual historical peak load compared to maximum connected load. For the purpose of this Power Master Plan, load diversity has been calculated based on records of historical events, including the May 12, 2019 storm event in which a peak 25 Hz load of 48 MW

PPS0122201258NWO 2-9

was observed. These data were used to calculate a load diversity of 92.0% for the 25 Hz demand assets: 48 MW (peak load) / 51.6 MW (maximum connected load) = 0.93.

Although the historical peak demand of all 60 Hz sources is not known, Jacobs assumes that a similar diversity factor among presently connected 60 Hz loads is appropriate and conservative to assume for the purposes of developing power master plan alternatives. SWBNO has confirmed that this assumption is acceptable given 60 Hz operating history and knowledge.

The Total Required Generation Capacity has been calculated for each asset classification in the asset inventory. For Asset Classification 1, which includes only those 25 Hz and 60 Hz loads which are currently connected to the SWBNO Power Distribution Network, the recommended Total Required Generation Capacity of the Carrollton Power Plant is 63.4 MW.

63.4
$$MW = (51.6 MW + 16.6 MW)x 0.93$$

It is the recommendation of Jacobs that SWBNO consider the generators and loads included in Asset Classifications 1+1a as the baseline requirement to establish the Power Master Plan alternatives. This classification combines all existing loads onto a single 60 Hz Power Distribution Network. When including Asset Classification 1a, the system load is increased to include an additional 14.9 MW of 60 Hz load from drainage Pump Stations 5, 6, and 7. Therefore, it is recommended that the Total Required Generation Capacity be maintained at a minimum of 77.3 MW.

77.3
$$MW = (51.6 MW + 16.6 MW + 14.9 MW) \times 0.93$$

Jacobs further recommends that SWBNO consider provisions for future generation capacity to allow for the connection of additional pumping stations which are geographically located near the existing Power Distribution Network feeders (Asset Classification 2) - DPS 19, Pritchard, and I-10. The additional 11.9 MW of load from these stations are nearly offset by the 10.0 MW of existing generation located at the Class 2 stations. Once connected, the existing generating assets at these stations will become part of the total generating assets, which contribute to the Total Required Generation Capacity of the 60 Hz Power Distribution Network. When including Asset Classification 2, it is recommended that the Total Required Generation Capacity be maintained at a minimum of 88.3 MW (Table 2-5).

88.3
$$MW = (51.6 MW + 16.6 MW + 14.9 MW + 11.9 MW) \times 0.93$$

Table 2-5. Total	l Required	Generation	Capacity	by Cla	assification

Classification	25 Hz Total (MW)	60 Hz Total (MW)	Diversity Factor	Total Required Generation Capacity (MW)
Class 1	51.6	16.6		63.4
Class 1+1a	51.6	31.5	0.93	77.3
Class 1+1a+2	51.6	43.4		88.3

These calculations and recommendations were reviewed with SWBNO stakeholders at the Interim Alternatives Review Meeting on August 28, 2019. SWBNO concurred with these recommendations as the basis for the Alternatives evaluated in the subsequent sections of this report.

2.3 Firm Reliable Generation Capacity

It is not practical to assume that all equipment can be kept in service concurrently at all times. All mechanical equipment requires planned outages for maintenance and is vulnerable to unplanned outages regardless of condition. As such, it is Jacobs' recommendation that SWBNO maintain enough generation capacity to meet the Total Required Generation Capacity even when the largest generation asset is unavailable due to a planned or unplanned outage. This is referred to as the Firm Reliable Generation Capacity. Based on the approved Total Required Generation Capacity described above, the following

2-10 PPS0122201258NWO

minimum Firm Reliable Generation Capacity values will be used to develop the Power Master Plan alternatives:

- Minimum Present Firm Reliable Generation Capacity = 77.3 MW
- Minimum Future Firm Reliable Generation Capacity = 88.3 MW

For the purposes of this report, the Minimum Present Firm Reliable Generation value applies to the design of the generation capacity; while the Minimum Future Firm Reliable Generation value applies to the design of the electrical infrastructure such as switchgear, feeders, etc. The future firm value allows for expansion of the power system loads, without replacing the critical electrical infrastructure.

PPS0122201258NWO 2-11

3. Alternative Development

Jacobs developed five alternatives which meet the key components included in the SWBNO Power Master Plan Problem Statement defined in Section 1. The Alternatives were developed based upon the evaluation of feasible options including Alternative 0, which is defined as a base case with the addition of essential upgrades to ensure ongoing and reliable operations of the Carrollton Water Plant to meet the basic threshold of reliable power. The following Alternatives were developed based on the key considerations outlined below:

- Alternative 0 Extend Remaining Useful Service Life of Existing Plant
- Alternative 1 Install 50 MW Utility Substation, Reduce Steam Use and Convert Loads to 60 Hz
- Alternative 2 Install 50 MW Substation, Eliminate Steam Use, Add CTGs and Convert Loads to 60 Hz
- Alternative 3 Install 50 MW Substation, Eliminate Steam Use, Add Engine Generators and Convert Loads to 60 Hz
- Alternative 4 Install 120 MW Substation, Eliminate Steam Use, Add CTGs and Convert Loads to 60

Numerous options for locating new generating equipment were assessed. For efficiency of operation and maintenance, it is recommended that the new substation and generating assets be placed at the same location. Two main options were evaluated including a new West Power Complex (WPC) at the Carrollton site, and addition of assets at DPS 17 / Station D. Station D was removed from consideration due to low site elevation, distance from existing generation infrastructure, and substation hardening requirements. In coordination with SWBNO during the Interim Review meeting on August 28, 2019, it was determined that a new WPC could be developed at the location of the former sludge ponds on the west side of the Carrollton site. This option allows for new generation to be constructed before existing equipment is retired. The WPC would include a new utility substation as well as new generation assets, switchgear, and a power control station. See site layouts in Appendix B for additional information. After completion of the project, the existing power plant facilities could be repurposed for other uses.

3.1 Key Considerations

The Key Components of the project Problem Statement guide the development of the power master plan alternatives. To be considered a viable option, the alternative must include a solution to address the Key Components outlined in Table 3-1, which are further elaborated in this section.

Table 3-1. Alternative Requirements

Key Component	Solution				
Public Welfare					
Cooling Water System	Each alternative must eliminate the cooling water cross-connection at the CWP				
Island Mode Operation	Each option must include provisions for 100% Island Mode self-generation to reliably operate all critical systems in a design event in the absence of purchased utility power				
Greenhouse Gas Emissions and Pollution Control	Each option must incorporate provisions for reduced GHG emissions compared to the current baseline emissions				
	Each option must comply with applicable state and federal laws for emissions from generating equipment.				
Efficiency, Sustainability, and Cost of Operations					
Reduced Steam Generation / Natural Gas Purchase	Each option must consider a reduction in steam generation due to the condition of the existing steam plant. Steam is generated in the boiler house by burning natural gas and / or diesel fuel. Fuel costs can be reduced by reducing steam production.				

PPS0122201258NWO 3-1

Table 3-1. Alternative Requirements

Key Component	Solution				
Equipment Selection					
Generating Assets	Each option studied which combines all loads onto a single 60 Hz Power Distribution Network must maintain a Firm (N-1) Reliable Generation Capacity of 77.3 MW Any new generating equipment must produce power at 60 Hz and have dual fuel operating				
Frequency Conversion	 The transition plan from 25 Hz generation and use to 60 Hz generation and use may require the inclusion of a frequency converter. 				
Electric Demand Assets	 Electric demand loads at the drainage pump stations must be converted to 60 Hz and raised above the historic high-water line. The recommended solution should include any fuel storage or handling modifications required to allow for 7 days of continuous operation without fuel delivery 				
SWBNO Network Feeders	All existing 6.6 kV feeders in the SWBNO Power Distribution Network will be replaced with 13.8 kV feeders.				
Substation Capacity					
Entergy Feeders	Each option must consider utility interconnection to a new industrial-grade Entergy substation instead of connection to local residential or commercial utility feeds				

3.1.1 Public Welfare

3.1.1.1 Cooling Water System

Following completion of a cooling water system study in December 2018, SWBNO requested that Jacobs facilitate a Turbine Cooling Water Assessment Workshop to fully understand the impacts from various perspectives and chart a path forward to mitigate the cooling water cross-connection without impacting public health or hindering plant operations. One of the main goals of the workshop was to develop solutions to address the cross-connection. It was determined that changing the source of cooling for the 25 Hz turbines in the existing powerhouse building impacts several other projects and should be part of a larger strategic master plan to address efficiency and reduce risk to the power and potable water systems.

The use of potable water for equipment cooling constitutes an illegal cross-connection between an industrial and potable water system, per the Louisiana Plumbing Code adopted in 2014. The SWBNO has committed to mitigating the connections listed in Table 3-2, and submitted a mitigation plan in June 2019.

Table 3-2. Mitigation of Cooling Water Cross-Connection (as described in June 2019 mitigation plan)

Equipment	Connection	Short-term Resolution	Long-term Resolution
Turbine 1	Condenser cooling water	Continuously circulate water within cooling system pipes and install disinfection loop	Retire Turbine 1
Turbine 3	Condenser cooling water	Continuously circulate water within cooling system pipes and install disinfection loop	Retire Turbine 3
Turbine 4	Condenser cooling water	Continuously circulate water within cooling system pipes and install disinfection loop	Segregate cooling system from the clearwell
Turbine 5	Generator cooling water	Send cooling water to drain	Segregate cooling system from the clearwell

3-2 PPS0122201258NWO

These cross-connections need to be eliminated in a timely manner, to meet the requirements of the Louisiana Department of Health. Routing the T5 generator cooling water to drain is complete, and turbines 1 and 3 are the very last to be dispatched in the order of operations. Plans for a disinfection loop for Turbine 4 are currently under development, with options for segregating the Turbine 4 cooling system from the clearwell system to be evaluated later.

3.1.1.2 Island Mode Operation

Entergy has stated that it cannot guarantee power during significant tropical weather events. To maintain reliable drainage operations, SWBNO needs to have adequate power available for starting and operating their large drainage pumps, potable water pumps, and sewage pumps during Island Mode operation.

3.1.1.3 Greenhouse Gas Emissions and Pollution

Greenhouse Gas

GHG emissions are primarily comprised of CO₂ and equivalent compounds and are a natural product of the combustion process. The quantity of GHG emitted by a particular process is proportional to the amount and composition of fuel burned. The City of New Orleans Climate Action Plan establishes an ambitious goal of reducing annual GHG pollution by 50% from 2017 levels. This plan is predicated upon citywide use of 100% low-carbon electricity among other strategies. Furthermore, the City has committed to lead by example in taking measurable and consistent steps to reduce GHG pollution from government facilities.

Based on a 2014 inventory of government facilities and operations, the City of New Orleans has calculated their total annual volume of GHG emissions at 204,136 metric tons of carbon dioxide equivalent (CO₂e). Of this volume, 62% (approximately 162,500 metric tons) is attributed to the water and wastewater treatment facilities. As documented in the Problem Statement for this Power Master Plan, the goal of this Power Master Plan is to "define an economic, efficient, and sustainable path toward modernizing and improving its electrical power system" and to "outline a path to the most reliable, resilient, and efficient energy use through a combination of self-generation and electricity purchase."

Pollution Control

Proper planning for emissions control and monitoring equipment should take place prior to development of major equipment requirements to ensure compliance with applicable state and federal regulations. The two most common pollutants associated with power producing facilities are nitrogen oxide (NOx) compounds and carbon monoxide (CO), both of which can be minimized through the use of emission control technology. Coordination with the Louisiana Department of Environmental Quality has not been performed at this time but will be required during design.

The existing power plant equipment has minimal provisions for control of emissions, and is not currently monitored with a continuous emissions monitoring system (CEMS). It is assumed for the purposes of this evaluation that new equipment will require some form of emission controls but likely not CEMS monitoring, since it will be operated primarily as emergency backup to utility power. As such, an allowance for emission control equipment has been included in the cost estimates and in the site layouts in the appendices. For alternatives that include the use of a gas turbine, it is assumed that a dry low-NOx engine design or a water injection system will be sufficient for pollution control. For alternatives that include the use of a reciprocating engine, selective catalytic reduction is assumed to be required.

3.1.2 Efficiency, Sustainability, and Cost of Operation

The total cost of ownership and operation for a power generation facility is greatly dependent upon the efficiency of the process by which power is generated. The environmental impact, also influenced by process efficiency, is greatly impacted by the quantity and types of fuels consumed as well. These factors are closely related, as discussed below.

3.1.2.1 Sustainability and Renewable Generation

Renewable generation technologies that harvest wind or solar energy could be added to offset the daily consumption of energy, thereby further improving both operational efficiency and environmental sustainability. However, there are physical limits to the amount of energy that can be extracted from a given area of land. Therefore, the biggest constraint to renewable generation will be space available. For example, a photovoltaic solar plant which produces 1 gigawatt-hour (GWh) per year requires approximately 2.8 acres. Excluding all rain events, the base load for constant duty equipment powered from the Carrollton Water Treatment facility is approximately 8 MW, or 70.1 GWh per year. Partnering with Entergy to construct remote renewable generation assets could be a more practical alternative to onsite renewable generation assets which would require SWBNO in-house capabilities to operate and maintain these facilities.

Also, it should be noted that wind or solar generation assets are not suitable for use as a source of emergency backup generation, as the environmental factors they require to produce power are not constantly available. As such, these types of technologies are not included in the inventory of firm capacity assets required to operate the system in an emergency event. These assets can provide significant value to SWBNO's power portfolio in reducing operating cost and GHG emissions; however, SWBNO does require 100% available power, regardless of environmental condition, to provide power to critical infrastructure, hence the focus in this study is on firm generation power assets.

3.1.2.2 Cost Reduction

Currently steam is generated in the boiler house by burning natural gas and / or diesel fuel. Fuel costs can be reduced by reducing or eliminating steam production and operating more efficient equipment.

The most critical factor that can influence the total cost of ownership and operation for the Carrollton facility relates to the amount of power that needs to be generated on site, which requires fuel and gas consumption. By constructing a dedicated and reliable utility substation, SWBNO can drastically reduce the amount of power produced onsite throughout the year. The reason that the cost of purchased utility power from Entergy is lower than the cost of power generated onsite stems from the diversity of generation sources in Entergy's portfolio, including the contributions from renewable technologies and nuclear energy.

The second most critical factor influencing the total cost of ownership and operation relates to the cost of operation and maintenance to maintain a state of readiness for emergency events when utility power is not available. These costs can be greatly reduced by replacing the existing inefficient steam generation assets with new dual fuel engine or turbine driven generation equipment. The specific impact of these two factors are evaluated more closely in the subsequent sections for each alternative studied.

3.1.3 Equipment Selection

3.1.3.1 Generating Assets

The two primary generation technologies analyzed include combustion turbine generators and reciprocating internal combustion engine (RICE) generators. Both technologies are well suited to provide the required reliability and efficiency in power generation. Both generation technologies are proven, in wide use in many utility and industrial facilities, and are available with dual fuel capability. It is assumed for all options that seven days of fuel oil reserves will be kept on site as a backup to natural gas.

For the purposes of developing the conceptual cost estimates and equipment layouts in this power master plan, Jacobs selected GE LM2500 as the basis of design for combustion turbine generators. These units provide a power output of approximately 22 MW, which is the same combustion turbine as T-6. Standardizing around this model would have the advantages of familiar operating procedures and for sharing of spare parts, driving efficiency in operations and maintenance of these units. However, other engine manufacturers such as Solar, Siemens and Kawasaki have similar offerings to allow for competitive bid procurement.

3-4 PPS0122201258NWO

A Wartsila model 18V50DF was selected as the basis of design for the RICE generator. Wartsila currently has the most efficient offering of large capacity, dual fuel reciprocating engines in the market, which would allow SWBNO to install the fewest number of engines required to meet the Total Required Backup Generation Capacity. The 18V50DF provides a power output of 18.0 MW. Using three large capacity units is expected to reduce the total cost of installation and the land area or building footprint required compared to a larger number of smaller capacity units. Jacobs anticipates that other RICE generator manufacturers such as Jenbacher would be willing to provide competitive bids, but the fleet available may require a higher number of smaller capacity units. One notable advantage of RICE engine technology compared to combustion turbines is turn-down ratio (minimum-to-maximum range of operability). Combustion turbines operate most efficiently at or very near their full nameplate capacity, and when operated at partial load, the operating efficiency declines and the emission of GHG and pollutants increases. This can present a substantial constraint to an operations staff when operating a power network in Island Mode, particularly at times when demand is low. The RICE units can be operated efficiently at a percentage of their nameplate capacity to match a given demand load.

3.1.3.2 Electric Demand Assets

Currently, the large drainage pumps powered directly by SWBNO are operated at 25 Hz, 6,600 volts. However, modern electric generators and other electrical equipment are not designed to operate on 25 Hz power; unless designed in a custom configuration, which can add substantial cost. Furthermore, utility power in the United States is delivered at 60 Hz. For these reasons, conversion of the existing system to a 60 Hz Power Distribution Network has been recommended for many decades. Frequency changers (discussed in subsequent section) could help with construction phasing, allowing new 60 Hz generation assets to be installed and existing 25 Hz assets to be retired before converting the loads throughout the drainage pump station network. However, this should be considered a short-term solution. Due to energy losses sustained as a result of frequency conversion and the higher cost of operating and maintaining 25 Hz equipment, this report recommends that all 25 Hz pump motors throughout the drainage pump stations be replaced with new 60 Hz vertical synchronous motors mounted above the maximum considered flood elevation.

Upgrades at the drainage pump stations will be required to be compatible with the transition from 25 Hz to 60 Hz power production from SWBNO. Additional benefits of the 60 Hz pump motor conversion include improved maintenance costs and reduced lead times to source parts with the standardization to modern 60 Hz power.

Table 3-3 summarizes the upgrades that will be necessary for SWBNO to use these drainage pump station assets with 60 Hz power production.

Table 3-3. Drainage Pump Station Upgrades

Upgrade	Rating / Description
60 Hz Motor for Each Pump	Located above base flood elevation
Gearbox for Each Pump	Maintain current pump speed after motor conversion
New Motor Switchgear and Soft Starter	4,160 Volts, located above base flood elevation
Transformer(s) Inside Drainage Pump Stations	13.8 kV to 4,160 V, located above base flood elevation
New Feeder Switchgear Bus	13.8 kV, located above base flood elevation
New Feeder Cables	Rated for 15 kV Minimum

The phasing of upgrading the drainage pump stations from 25 Hz to 60 Hz must be completed in such a way that:

 Adequate drainage can be performed as required throughout construction. (Pump configurations vary by pump station.)

PPS0122201258NWO 3-5

- Drainage pump stations are required to be at full capacity during hurricane season (June November); that is, no pump can be out of service during this time frame.
- Redundant feeders with adequate ampacity for all loads are required.
- All new equipment must be received before work begins at each site to minimize pump down time.

These constraints are meant to protect the residents of New Orleans from flooding due to a large rain event or hurricane while the drainage pump stations are being upgraded.

3.1.3.3 Frequency Conversion

Existing rotary-type frequency changers allow for a limited amount of 60 Hz power to be converted to 24 Hz power. If the capacity for frequency conversion were to be substantially increased, it is reasonable to conclude that new 60 Hz generation assets could be installed and existing 25 Hz assets retired in advance of converting the loads throughout the drainage pump station network to 60 Hz.

Static frequency changer (SFC) sizing for each alternative must be determined by the maximum anticipated transfer of power between the 25 Hz and the 60 Hz electrical distribution systems, in either direction. It is strongly dependent on the Alternative chosen as well as the implementation plan or work phasing strategy ultimately chosen to complete the project. Under each alternative, the largest single generating source is assumed to be out of service during an emergency or maximum demand condition. This operating condition is assumed to occur at the completion of each phase of the project and the energy balance of the system is reviewed at that point. From this analysis, the maximum required power transfer across the SFC is determined.

For alternatives which do not convert the Power Distribution Network to 60 Hz, the connection of additional 60 Hz drainage pump stations to the 25 Hz Power Distribution Network would require new frequency changers and is not recommended.

3.1.3.4 SWBNO Network Feeders

The SWBNO Power Distribution Network is a mixture of 25 Hz and 60 Hz feeders that consist primarily of insulated cable belowground in duct banks with a very limited portion above ground as insulated cable or non-insulated overhead power lines. The physical duct bank infrastructure is a mix of aging tile formed 'conduits' and manholes, aging direct buried conduits and brick manholes, and contemporary concrete encased non-metallic conduit and precast concrete manholes. Many of the duct bank alignments are along public rights-of-way. The availability of vacant usable duct bank pathways is limited throughout the system.

The topology of the SWBNO managed Power Distribution Network is a hybrid of radial and looped feeders with multiple multi-feeder interconnection nodes. There are multiple power supply source interconnections throughout the SWBNO managed Power Distribution Network with a few of the major hubs being the Carrollton Water Treatment Plant Power Complex, the Carrollton Frequency Changer, and STA-D (DPS-17) Frequency Changer.

A portion of the SWBNO managed Power Distribution Network feeders have been replaced under the Hazard Mitigation Grant Program (HMGP). However, many more feeders still require replacement, as they exhibit signs of aging beyond their usable life with frequent failures. The nominal voltage of the 25 Hz portion of the SWBNO managed Power Distribution Network is 6600 V while the nominal voltage of the 60 Hz portion of the network is 4160 V. Feeders that have been replaced under the HMGP are 15 kV rated cable operating at 4160 V.

This Power Master Plan recommends replacement of feeders that have not yet been upgraded, and raising the distribution voltage to 13.8 kV in alignment with the upgrades associated with the HMGP. The conversion to a higher distribution voltage will allow more power to be delivered through the same conduits presently installed, garnering efficiencies in the Power Distribution Network.

3-6 PPS0122201258NWO

3.1.4 Substation Capacity

Another differentiator between the alternatives relates to the capacity of substation to be constructed. Jacobs analyzed two different sizes, a 50 MVA and a 120 MVA. The 120 MVA substation was sized based on the total connected loads of approximately 119 MW in Old City Drainage, allowing for all pumping power to be supplied by the Entergy substation now and in the future. In this scenario, SWBNO could purchase 100% of their power from Entergy on a regular basis, including heavy drainage events. The generation assets would not be needed for any pumping scenario as long as utility power is available. However, a disadvantage of purchasing large amounts of utility power is that SWBNO would incur a larger demand charge, therefore, increasing the total average cost of purchased electricity throughout the entire year.

The 50 MVA sized substation was nominally selected to analyze the potential savings of a smaller substation. This alternative would still be capable of supplying all power required by the SWBNO Power Distribution Network for typical operations up to 50 MW. However, during a peak demand event, the 50 MVA substation would not be able to deliver all the power required. Therefore, SWBNO would need to operate their generation assets during heavy drainage events in parallel with the utility power available. For the purpose of the economic analysis, Jacobs assumed that annual drainage activities requiring power in excess of 50 MVA will occur for approximately 300 hours per year on average.

3.2 Alternative 0 – Extend Remaining Useful Service Life of Existing Plant

Alternative 0 represents the current trajectory of operation and maintenance of the Carrollton Power Plant and Power Distribution Network if existing systems are upgraded to prolong useful service life for 30 years but are not replaced. Previous studies have conclusively demonstrated that continued operation of the power generation and Power Distribution Network as-is is not viable due to age and condition of equipment; therefore, investment is required in order to maintain use of the existing system, and provide an equivalent solution for comparison to the other alternatives in this Power Master Plan evaluation. Table 3-4 outlines how each of the key components of the Problem Statement are addressed in Alternative 0, and Figure 3-1 summarizes the proposed generation assets.

Table 3-4. Alternative 0 Solutions

Key Component	Solution
Public Welfare	
Cooling Water System	A new "river cooling" heat exchanger system will be installed to eliminate the cooling water cross connect at the STG-1, STG-3, and STG-4 condensers. A fin-fan cooler would be installed to eliminate the cooling water cross connect at CTG-5
Island Mode Operation	Total Reliable Generating Capacity = 83.5 MW
	Firm Reliable Generating Capacity = 61.5 MW (note that this is less than the recommended value)
	Future Firm Reliable Generating Capacity = N/A (Connection of additional 60 Hz drainage pump stations to 25 Hz Power Distribution Network would require new frequency changers and is not recommended)
Greenhouse Gas Emissions	This option produces an estimated 120,200 tons/yr of GHG emissions
and Pollution Control	Upgrades to equipment will include emissions controls and/or permitting revisions as required for compliance with state and federal laws
Efficiency, Sustainability, and Cost of Operation	
Reduced Steam Generation /	Steam generation will not be reduced.
Natural Gas Purchase	Natural gas purchase will not be reduced.

PPS0122201258NWO 3-7

Table 3-4. Alternative 0 Solutions

Key Component	Solution
Equipment Selection	
Generating Assets	 Major equipment upgrades will be required at STG-1, STG-3 and CTG-5 to extend useful service life and facilitate parallel operation.
	Major upgrades to the boiler house will be required to extend the useful life of the system and to produce additional steam to improve the power output of STG-4.
Frequency Conversion	The existing rotary frequency changer in the plant frequency changer building will be replaced with a minimum 15 MW capacity SFC.
Electric Demand Assets	SWBNO would continue to operate with a power network and drainage pump stations bifurcated into 60 Hz and 25 Hz system components.
	All existing pump motors, switchgear and other electrical components sensitive to floodwaters would be relocated or replaced above the maximum considered flood elevation.
SWBNO Network Feeders	 All remaining 6.6 kV feeders in the SWBNO Power Distribution Network not previously replaced in the Hazard Mitigation Grant Program project will be replaced with new 13.8 kV feeders.
Substation Capacity	
Entergy Feeders	No new substation.
	The reliability of existing 60 Hz feeders from Entergy would not be improved.

Alternative 0 Proposed Generation Assets

■ Existing 25 cycle Nameplate 25 cycle (Reference Only) ■ Existing 60 cycle

Figure 3-1. Alternative 0 Proposed Generation Assets

3-8 PPS0122201258NWO

3.3 Alternative 1 – Install 50 MW Utility Substation, Reduce Steam Use and Convert Loads to 60 Hz

In Alternative 1, purchased utility power becomes the primary source of energy via a dedicated substation. SWBNO Generation is needed only when system demand exceeds substation capacity or when utility power is unavailable (estimated to be 300 hours per year). Table 3-5 outlines how each of the key components of the Problem Statement are addressed in Alternative 1, and Figure 3-2 summarizes the proposed Generation Assets.

Table 3-5. Alternative 1 Solutions

Key Component	Solution
Public Welfare	
Cooling Water System	A new "river cooling" heat exchanger system will be installed to eliminate the cooling water cross connect at the STG-4 condenser.
	A fin-fan cooler would be installed to eliminate the cooling water cross connect at CTG-5
Island Mode Operation	Total Reliable Generating Capacity = 106.9 MW
	Firm Reliable Generating Capacity = 84.9 MW
	Future Firm Reliable Generating Capacity = 94.9 MW (10 MW added by connection of Class 2 generating assets)
Greenhouse Gas Emissions	This option produces an estimated 79,800 tons/yr of GHG emissions
and Pollution Control	New equipment will include emissions controls and/or permitting revisions as required for compliance with state and federal laws
Efficiency, Sustainability, and	Cost of Operation
Reduced Steam Generation / Natural Gas Purchase	Retire all boilers except for Boiler #2. Demolish all existing steam piping and install a new direct steam connection from Boiler #2 to STG-4 only
	Install new 150 kpph Auxiliary Boiler to meet T4 optimum operating conditions
	Natural gas purchase would only be required when power demand exceeds substation capacity and SWBNO generating assets are running or in an Emergency situation when Entergy is not available.
Equipment Selection	
Generating Assets	Install one new 60 Hz LM2500 dual fuel combustion turbine generator with an approximate capacity of 22 MW
	Retire STG-1 and STG-3.
	Boiler plant upgrades as noted above. However, a new deaerator and new water treatment equipment will still be required, at a minimum
	Major equipment upgrades will be required at CTG - 5 to extend useful service life and facilitate parallel operation
	New 600 psi gas compressor
	Connect Class 1a generating assets (DPS Diesel Generators) to Power Distribution Network
Frequency Conversion	 Install three 25 MW capacity 60 Hz to 25 Hz SFCs to allow for replacement of existing 25 Hz generation assets with new 60 Hz generation at the WPC prior to conversion of 25 Hz load throughout the City to 60 Hz. SFCs may be retired as loads are converted.
Electric Demand Assets	Replace all 25 Hz pump motors with new 60 Hz motors and gearboxes installed above base flood elevation. This work will need to be phased over multiple years.
SWBNO Network Feeders	All remaining 6.6 kV feeders in the SWBNO Power Distribution Network not previously replaced in the HMGP project will be replaced with new 13.8 kV feeders.
Substation Capacity	
Entergy Feeders	Install a new Entergy substation with 50 MVA capacity
	All SWBNO generating assets become backup only for when Entergy is not available or demand exceeds substation capacity.

PPS0122201258NWO 3-9

35

30

Alternative 1 Proposed Generation Assets

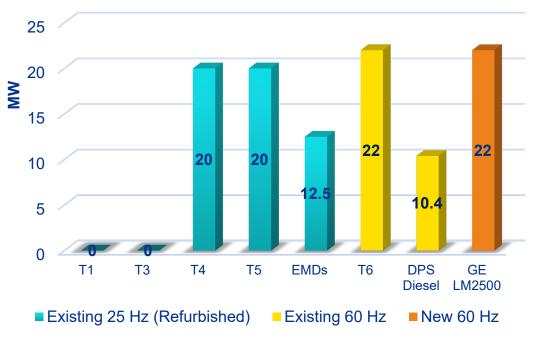


Figure 3-2. Alternative 1 Proposed Generation Assets

3.4 Alternative 2 – Install 50 MW Substation, Eliminate Steam Use, Add CTGs and Convert Loads to 60 Hz

In Alternative 2, purchased utility power is the primary source of energy via a dedicated substation, and SWBNO generation is needed only when system demand exceeds substation capacity or when utility power is unavailable. This alternative considers eliminating all steam production equipment, steam turbine generators, and CTG-5. Three new combustion turbine generators similar to the existing CTG-6 at the Carrollton Power Plant would be installed to replace this generation capacity. Table 3-6 outlines how each of the key components of the Problem Statement are addressed in Alternative 2, and Figure 3-3 summarizes the proposed Generation Assets.

Table 3-6. Alternative 2 Solutions

Key Component	Solution
Public Welfare	
Cooling Water System	Cross connect concerns would be eliminated by the retirement of all existing cross connected equipment
Island Mode Operation	 Total Reliable Generating Capacity = 110.9 MW Firm Reliable Generating Capacity = 88.9 MW Future Firm Reliable Generating Capacity = 98.9 MW (10 MW added by connection of Class 2 generating assets)

3-10 PPS0122201258NWO

Table 3-6. Alternative 2 Solutions

Key Component	Solution	
Greenhouse Gas Emissions and Pollution Control	This option produces an estimated 78,100 tons/yr of GHG emissions	
and Poliution Control	New equipment will include emissions controls and/or permitting revisions as required for compliance with state and federal laws	
Efficiency, Sustainability, and	Cost of Operation	
Reduced Steam Generation /	Retire all steam generation and use.	
Natural Gas Purchase	Natural gas purchase would only be required when power demand exceeds substation capacity and SWBNO Generating assets are running or in an Emergency situation when Entergy is not available.	
Equipment Selection		
Generating Assets	Install three new LM2500 dual fuel combustion turbine generators with an approximate capacity of 22 MW each	
	Three new 600 psi gas compressors	
	Retire STG-1, STG-3, STG-4, CTG-5, and boiler plant	
	Connect Class 1a generating assets (DPS Diesel Generators) to Power Distribution Network	
Frequency Conversion	 Install three 25 MW capacity 60 Hz to 25 Hz SFCs to allow for replacement of existing 25 Hz generation assets with new 60 Hz generation at the WPC prior to conversion of 25 Hz load throughout the City to 60 Hz. SFCs may be retired as loads are converted. 	
Electric Demand Assets	Replace all 25 Hz pump motors with new 60 Hz motors and gearboxes installed above base flood elevation. This work will need to be phased over multiple years.	
SWBNO Network Feeders	All remaining 6.6 kV feeders in the SWBNO Power Distribution Network not previously replaced in the HMGP project will be replaced with new 13.8 kV feeders.	
Substation Capacity		
Entergy Feeders	Install a new Entergy substation with 50 MVA total capacity	
	All SWBNO generating assets become backup only when Entergy is not available, or demand exceeds substation capacity.	

PPS0122201258NWO 3-11

Alternative 2 Proposed Generation Assets

Figure 3-3. Alternative 2 Proposed Generation Assets

Existing 25 Hz

3.5 Alternative 3 – Install 50 MW Substation, Eliminate Steam Use, Add Engine Generators and Convert Loads to 60 Hz

Existing 60 Hz

■ New 60 Hz

In Alternative 3, purchased utility power is the primary source of energy via a dedicated substation, and SWBNO Generation is needed only when system demand exceeds substation capacity or when utility power is unavailable. This alternative considers eliminating all steam production equipment, steam turbine generators and CTG-5. Three new engine generators would be installed to replace this generation capacity. This option evaluates the LCC benefit of engine generators in lieu of combustion turbine generators. Table 3-7 outlines how each of the key components of the Problem Statement are addressed in Alternative 3, and Figure 3-4 summarizes the proposed Generation Assets.

3-12 PPS0122201258NWO

Table 3-7. Alternative 3 Solutions

Key Component	Solution
Public Welfare	
Cooling Water System	Cross connect concerns would be eliminated by the retirement of all existing cross connected equipment
Island Mode Operation	Total Reliable Generating Capacity = 98.9 MW Firm Reliable Generating Capacity = 76.9 MW
	• Future Firm Reliable Generating Capacity = 86.9 MW (10 MW added by connection of Class 2 generating assets)
Greenhouse Gas Emissions	This option produces an estimated 77,800 tons/yr of GHG emissions
and Pollution Control	New equipment will include emissions controls and/or permitting revisions as required for compliance with state and federal laws
Efficiency, Sustainability, and	Cost of Operation
Reduced Steam Generation /	Retire all steam generation and use.
Natural Gas Purchase	Natural gas purchase would only be required when power demand exceeds substation capacity and SWBNO generating assets are running or in an emergency situation when Entergy is not available.
Equipment Selection	
Generating Assets	Install three new Wartsila 18V50DF dual fuel engine generators with an approximate capacity of 18 MW each
	Retire STG-1, STG-3, STG-4, CTG-5, and boiler plant
	Connect Class 1a generating assets (DPS Diesel Generators) to Power Distribution Network
Frequency Conversion	 Install three 25 MW capacity 60 Hz to 25 Hz SFCs to allow for replacement of existing 25 Hz generation assets with new 60 Hz generation at the WPC prior to conversion of 25 Hz load throughout the City to 60 Hz. SFCs may be retired as loads are converted.
Electric Demand Assets	Replace all 25 Hz pump motors with new 60 Hz motors and gearboxes installed above base flood elevation. This work will need to be phased over multiple years.
SWBNO Network Feeders	All remaining 6.6 kV feeders in the SWBNO Power Distribution Network not previously replaced in the Hazard Mitigation Grant Program project will be replaced with new 13.8 kV feeders.
Substation Capacity	
Entergy Feeders	Install a new Entergy substation with 50 MVA total capacity
	All SWBNO generating assets become backup only for when Entergy is not available, or demand exceeds substation capacity.

PPS0122201258NWO 3-13

Alternative 3 Proposed Generation Assets

Figure 3-4. Alternative 3 Proposed Generation Assets

Existing 25 Hz

3.6 Alternative 4 – Install 120 MW Substation, Eliminate Steam Use, Add CTGs and Convert Loads to 60 Hz

Existing 60 Hz

■ New 60 Hz

In Alternative 4, purchased utility power is the primary source of energy via a new Entergy substation with 120 MVA total capacity. SWBNO Generation is needed only when utility power is unavailable. This option would likely result in higher charges for standby power capacity, but would also allow SWBNO to use generation assets less frequently during rain events. This option would allow SWBNO to assess the cost benefit of potentially selling power back into the transmission grid when the wholesale price of power is favorable. This alternative considers eliminating all steam production equipment, steam turbine generators and CTG-5. Three new combustion turbine generators similar to the existing CTG-6 at the Carrollton Power Plant would be installed to replace this generation capacity. Table 3-8 outlines how each of the key components of the Problem Statement are addressed in Alternative 4, and Figure 3-5 summarizes the proposed Generation Assets.

3-14 PPS0122201258NWO

Table 3-8. Alternative 4 Solutions

Key Component	Solution
Public Welfare	
Cooling Water System	Cross-connect concerns would be eliminated by the retirement of all existing cross-connected equipment
Island Mode Operation	Total Reliable Generating Capacity = 110.9 MW Firm (N-1) Reliable Generating Capacity = 88.9 MW Future Firm (N-1) Reliable Generating Capacity = 98.9 MW (10 MW added by connection of Class 2 generating assets)
Greenhouse Gas Emissions and Pollution Control	This option produces an estimated 77,800 tons/yr of GHG emissions New equipment will include emissions controls and/or permitting revisions as required for compliance with state and federal laws
Efficiency, Sustainability, and	Cost of Operation
Reduced Steam Generation / Natural Gas Purchase	Retire all steam generation and use. Natural gas purchase would only be required when Entergy is unavailable.
Equipment Selection	
Generating Assets	Install three new LM2500 dual fuel combustion turbine generators with an approximate capacity of 22 MW each
	Three new 600 psi gas compressors Paties STC 4 STC 2 STC 4 STC 5 and bellevilled.
	 Retire STG-1, STG-3, STG-4, CTG-5, and boiler plant Connect Class 1a generating assets (DPS Diesel Generators) to Power Distribution Network
Frequency Conversion	Install three 25 MW capacity 60 Hz to 25 Hz SFCs to allow for replacement of existing 25 Hz generation assets with new 60 Hz generation at the WPC prior to conversion of 25 Hz load throughout the City to 60 Hz. SFCs may be retired as loads are converted.
Electric Demand Assets	Replace all 25 Hz pump motors with new 60 Hz motors and gearboxes installed above maximum considered flood elevation. This work will need to be phased over multiple years.
SWBNO Network Feeders	All remaining 6.6 kV feeders in the SWBNO Power Distribution Network not previously replaced in the Hazard Mitigation Grant Program project will be replaced with new 13.8 kV feeders.
Substation Capacity	
Entergy Feeders	Install a new Entergy substation with two 60 MVA peak rated transformers (120 MVA total capacity) All SWBNO generating assets become backup only for when Entergy is not available

PPS0122201258NWO 3-15

Alternative 4 Proposed Generation Assets

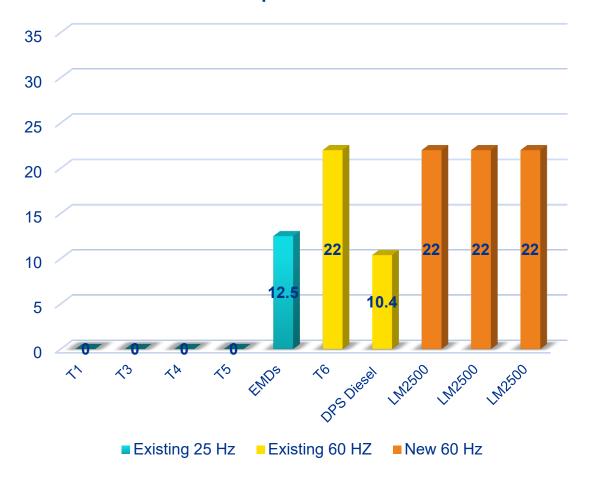


Figure 3-5. Alternative 4 Proposed Generation Assets

A comparative summary table of the alternatives is included in Appendix C.

3-16 PPS0122201258NWO

4. Comparison of Alternatives

Each of the alternatives described in this report were evaluated and ranked against one another using an evaluation matrix, during the Alternative Review Workshop with SWBNO on November 6, 2019. Table 4-1 lists the evaluation factors and associated maximum points that were defined during the Workshop and utilized in the evaluation.

Table 4-1. Evaluation Factors and Associated Points

Max Points	Evaluation Factor	Rank / Reasoning	
35	Life Cycle Cost (LCC)	(1) SWBNO is interested in a long-term cost-effective solution for critical public health and safety services in Orleans Parish. The optimal solution for the power system will provide an opportunity to re-allocate funds from the aging power system to other infrastructure in the Parish.	
25	Improved Reliability / Resiliency	(2) New Orleans' critical infrastructure is crucial to the health and safety of residents and visitors. Because of its age and condition, the existing power system is unreliable. If a component stops working there is low confidence that it can start again in a timely manner. Confidence in the critical power infrastructure is important to SWBNO.	
10	GHG Emissions / Sustainability	(3) Environmental considerations are important in climate change management. The Climate Action for a Resilient New Orleans plan was incorporated into the evaluation criteria.	
5	Capital Cost	(4) The remaining six evaluation factors contribute an equal weight to the overall	
5	Elimination of 25 Hz Systems	ranking. Each of the factors is important to SWBNO, and helps differentiate each of the alternatives.	
5	Location		
5	Operability		
5	Maintainability		
5	Stakeholder Impact / Marketability		
100	Total	The maximum amount of points is 100	

4.1 Evaluation Factors

4.1.1 Life Cycle Cost

The LCC analysis calculates a total LCC in current-day dollars for each alternative, taking into account capital investment, annual purchased utilities, relative operation and maintenance costs, utility cost escalation, inflation, etc. The following assumptions apply to the LCC analysis:

- It is assumed that the transition of load from existing 25 Hz generation assets to new 60 Hz utility power or backup generation assets will be phased over at least 5 years. The LCC evaluation will be calculated based on an assumed completion date 5 years from now.
- Length of the economic study is 30 years after project completion
- Capital costs for procurement and installation of new plant equipment are spread over 30 years, with a 3.75% interim finance rate.
- Discount rate is 3.75%
- Inflation rate is 3%
- Operation and maintenance escalation rate is 3%
- Utility rate escalations are based on U.S. Department of Energy escalation projections for both natural gas and purchased electricity, specific to the state of Louisiana

- End-of-year accounting convention is utilized
- It is assumed that backup (diesel) fuel will only be consumed when natural gas is unavailable. Because the loss of natural gas supply is unlikely to occur often, the use of backup (diesel) fuel is not considered in the analysis.
- · Tax implications are not considered

LCC results (presented in Appendix D) summarize the spreadsheet-based analysis completed for each alternative. The Alternative 0 model includes major necessary upgrades to the existing plant and to the pump stations as required to achieve the fundamental goals of the project such as improved reliability, elimination of cooling water cross connections, etc. Without these Alternative 0 upgrades, the existing plant would be unreliable and inadequate to continue serving the current drainage load demand. This alternative is an important benchmark against which the cost and economic performance of other alternatives can be compared and evaluated.

For purposes of comparison, major generating equipment maintenance costs are based on Long Term Service Agreement (LTSA) budget quotes from the equipment manufacturers. It is understood that this is not necessarily the contractual mechanism by which this work will be done by SWBNO. The estimated cost of operation and maintenance for each option includes an approximation for the number and type of personnel required and the approximate cost per employee to adequately operate and maintain the onsite power generation systems at the Carrollton Power Plant and/or a new WPC. It does not attempt to capture the cost of operation and maintenance of other SWBNO-owned systems such as water treatment facilities, water distribution systems, or remote stormwater drainage and sewer pumping stations (Appendix E). Cost savings resulting from efficiencies gained with pump motor upgrades are not included in this analysis but should be considered in future master planning efforts.

The LCC analysis considers the cost of electric utilities. The 2018 utility bill spreadsheet provided to SWBNO from Entergy identifies multiple rate structures used to calculate charges for SWBNO's various utility accounts. For the purpose of this evaluation, the cost and consumption of electric energy and natural gas for Alternative 0 is assumed to continue accordingly. Based on a meeting with SWBNO and Entergy on October 3, 2019, Entergy cannot definitively say what rate structure would be utilized to calculate the cost of utility power from the planned transmission level substation. However, two published rate structures were discussed as likely candidates. These include the High Voltage Service rate schedule (HV-24) and the Large Interruptible rate schedule (LIS-13). For the purpose of this analysis, Jacobs created a load profile based on the connected load and the estimated minimum connected load, along with the total kilowatt-hours purchased and produced in 2018. Both rate schedules were applied to Alternatives 1 through 4, and an associated LCC was calculated. Details of the analyses are included in Appendix E.

In addition to the baseline LCC comparison, the spreadsheets created for this evaluation allow for each option to be subjected to a sensitivity analysis to verify the stability of the LCC savings against unforeseen fluctuations in purchased utility costs. The intent of this analysis is to provide greater confidence that the recommended plant configuration will result in economic benefit to SWBNO over a broad range of potential market volatility as well as changes in utility rate structures. The following values may be manipulated with instant recalculation of LCC:

- Increased/decreased escalation of the fuel gas rate
- Increased/decreased escalation of the electric rate

A graphical representation of the sensitivity analysis is included in Appendix F. Based on the calculations, a fluctuation in the cost of fuel gas has the greatest impact on the LCC savings of each alternative, primarily due to the present day (Alternative 0) sensitivity to fuel cost.

Each alternative was ranked based on the LCC evaluation factor, and points were assigned based on the following six criteria listed in Table 4-2. The LCC contributes about 35% to the total evaluation.

4-2 PPS0122201258NWO

Table 4-2. Life Cycle Cost Evaluation

Points	Criteria
35	Lowest Cost Option
31.5	Within 2% of Lowest Cost Option
28	Within 4% of Lowest Cost Option
24.5	Within 6% of Lowest Cost Option
17.5	Within 10% of Lowest Cost Option
0	>10% Above Lowest Cost Option

4.1.2 Improved Reliability / Resiliency

Reliability describes the ability of a system or component to function under stated conditions for a specified period of time. Reliability is closely related to availability, which is typically described as the ability of a component or system to function at a specified moment or interval of time. Resilience is an ability to recover from or adjust easily to unforeseen events or change. This Plan addresses resilience by including a dependable connection to Entergy at a new substation as well as generator redundancy in the SWBNO system.

Reliability of each alternative was based on the following factors:

- Type of generating equipment steam turbines vs. combustion turbines vs. reciprocating generators
- Equipment age older equipment is less reliable
- Estimated equipment run time day-to-day operation vs. operation during rain events vs. operation during Island Mode only
- Ease of operation and maintenance
- Availability of skilled talent
- · Availability of spare parts

Each alternative was ranked based on the Improved Reliability / Resiliency evaluation factor, and points were assigned based on the criteria listed in Table 4-3. Improved Reliability / Resiliency contributes about 25% to the total evaluation.

Table 4-3. Improved Reliability / Resiliency Evaluation

Points	Criteria
25	Substation Installed All existing equipment (T1, T3, T4, and T5) replaced All steam generation retired
12.5	Substation installed Some existing equipment refurbished (T5 refurbished and power controls upgraded to allow for parallel operation) Some existing equipment (T1 and T3) replaced
0	Equipment refurbished, but not replaced Frequency conversion capacity improved No substation installed

4.1.3 Greenhouse Gas Emissions / Sustainability

Jacobs evaluated the volume of GHG currently being emitted by the SWBNO as a result of thermal energy generated at the Carrollton Power Plant and how those emission quantities would be affected by

PPS0122201258NWO 4-3

implementing each of the options studied. These calculations do not include GHG emissions attributable to other power-producing plants, power consumed at other substations, or other sources such as transportation emissions. Refer to Appendix D of this report for a summary and comparison of CO₂ emissions for each option considered. All options other than Alternative 0 offer a significant reduction in annual GHG emissions.

Utility power in New Orleans is produced at a lower GHG intensity compared to self-generated power at the Carrollton Power Plant today. The utility power originates from many sources which include nuclear power plants in addition to fossil fuel plants and renewable sources. According to data published by the U.S. Energy Information Administration, the GHG emissions created in the production of all utility power in the region averages 1,125 pounds per megawatt-hour (MWh). Because all alternatives contemplated in this Power Master Plan propose the addition of a utility substation, SWBNO will be able to reduce plant emissions by approximately 36,650 metric tons per year (18% of the City of New Orleans calculated metric tons of CO₂) simply by purchasing utility power in lieu of self-generation.

Each alternative was ranked based on the Greenhouse Gas Emissions / Sustainability evaluation factor, and points were assigned based on the six criteria listed in Table 4-4. Greenhouse Gas Emissions / Sustainability contributes about 10% to the total evaluation.

Table 4-4. Greenhouse Gas Emissions / Sustainability Evaluation

Points	Criteria
10	Lowest GHG Option
8	Within 1% of Lowest GHG Option
6	Within 3% of Lowest GHG Option
4	Within 5% of Lowest GHG Option
2	Within 10% of Lowest GHG Option
0	>10% Above Lowest GHG Option

4.1.4 Capital Cost

Preliminary cost estimates presented in Appendix G were prepared for each alternative. These construction cost estimates may have a margin of error of roughly ±30% for the scope of proposed construction. The costs are based on Jacobs' database of previous project costs and estimates previously prepared for the SWBNO. These costs are prepared on a comparative basis, and should not be considered all-inclusive for an individual alternative. Additional costs for each alternative may include permitting, general site work, site lighting, and costs associated with construction phasing.

Each alternative was ranked based on the capital cost evaluation factor, and points were assigned based on the six criteria listed in Table 4-5. The initial capital cost contributes about 5% to the total evaluation.

Table 4-5. Capital Cost Evaluation

Points	Criteria
5	Lowest Cost Option
4.5	Within 1% of Lowest Cost Option
4	Within 2% of Lowest Cost Option
3.5	Within 5% of Lowest Cost Option
3	Within 7% of Lowest Cost Option
2.5	Within 10% of Lowest Cost Option

4-4 PPS0122201258NWO

4.1.5 Elimination of 25 Hz Assets

25 Hz power systems are increasingly becoming more difficult and expensive to maintain, as extremely few systems in the United States continue to operate at this frequency. Furthermore, most of the existing 25 Hz assets at the Carrollton Power Plant, aside from the recently refurbished T4 and the relatively new EMDs, have exceeded their useful service life. Because 25 Hz pump motors cannot operate on utility power without the use of frequency converters, a total transition away from the production and use of 25 Hz assets can substantially simplify the SWBNO system while improving both efficiency and reliability. This transition has been recommended in numerous previous engineering reports dating back to 1974 and remains a fundamental goal of this Power Master Plan. All alternatives except Alternative 0 and Alternative 1 consider complete transition to a 60 Hz system of generation and use.

Each alternative was ranked based on the Elimination of 25 Hz Assets evaluation factor, and points were assigned based on the three criteria listed in Table 4-6. Elimination of 25 Hz Assets contributes about 5% to the total evaluation.

Table 4-6. Elimination of 25 Hz Assets Evaluation

Points	Criteria
5	All 25 Hz assets (T1, T3, T4, and T5) replaced with 60 Hz generation capacity
2.5	Some 25 Hz assets (T1 and T3) replaced with 60 Hz generation capacity
0	All 25 Hz generation retained

4.1.6 Location

Each alternative was ranked based on the Location evaluation factor, and points were assigned based on the criteria listed in Table 4-7. Location contributes about 5% to the total evaluation. At the request of SWBNO, the cost analysis in this report assumes that new generating equipment will be installed in a new power plant building, though equipment enclosures are also available that would allow for outdoor installation potentially at reduced cost. In either case, acoustic enclosures will be required to mitigate noise transmission and ensure a safe working environment for plant personnel.

Table 4-7. Location Evaluation

Points	Criteria
5	All generation located at a new WPC, located further from residents Generation assets only operated when Entergy is not available (very rarely)
4	EMD assets near residents rarely operated Generation Assets only operated during drainage events Most Generation Assets elevated
0	Generation assets near residents at existing site, frequently in operation

4.1.7 Operability

Each alternative was ranked based on the Operability evaluation factor, and points were assigned based on the three criteria listed in Table 4-8. Operability contributes about 5% to the total evaluation. The primary operability goals of SWBNO include prompt start-up to respond quickly to weather or power availability events, as well as a significant engine turn-down rate to allow for one primary generator to be able to carry anticipated dry-weather connected load of approximately 6 to 10 MW, within the manufacturer's recommended operating parameters of the equipment.

PPS0122201258NWO 4-5

Table 4-8. Operability Evaluation

Points	Criteria
5	New Engines can be started in less than 5 minutes
	Capacity of Single New Generator is limited to capacity of largest existing generators (resulting in an equivalent minimum generation capability)
	New Engine Power output can be turned down to 30%
2.5	New Engines can be started in less than 15 minutes
	Capacity of Single New Generator is higher than capacity of largest existing generator (resulting in a higher minimum generation capability)
	New Engine Power output can be turned down to 50%
0	Start-up requires heating up steam boiler - more than 1 hour

4.1.8 Maintainability

Each alternative was ranked based on the Maintainability evaluation factor, and points were assigned based on criteria listed in Table 4-9. Maintainability was primarily evaluated based on ease of procuring and storing spare parts, as well as training required for maintenance activities. Maintainability contributes about 5% to the total evaluation.

Table 4-9. Maintainability Evaluation

Points	Criteria
5	All Steam Generation and Aging Assets Retired, Uniform Engine Fleet
2.5	All Steam Generation and Aging Assets Retired, Diverse Engine Fleet
0	Retain Existing Aging Assets, including steam generation

4.1.9 Stakeholder Impact / Marketability

Significant infrastructure upgrades like those proposed in this Power Master Plan will likely require coordination and agreement among community stakeholders such as public interest groups, members of the political community, and potential funding partners. Some of the factors important to stakeholders may include the following:

- Timing and location of construction activities / temporary inconvenience to the community
- Availability of local jobs and/or workforce development opportunities
- Efficient use of funds and expeditious payback
- Reduced potential of street flooding and boil-water events due to power availability
- Resilience and / or expandability of system relative to climate escalation and/or drainage system expansion
- Environmental stewardship
- Implemented solution is equitable amongst stakeholders
- Solution is both practical and innovative in alignment with coastal city leaders like Singapore and the Netherlands

Each alternative was ranked based on the Stakeholder Impact / Marketability evaluation factor, and points were assigned based on the criteria listed in Table 4-10. Stakeholder Impact / Marketability contributes about 5% to the total evaluation.

Note that the majority of the factors discussed above are already factored into the Problem Statement and alternatives development; therefore, differentiation is based primarily on cost and sustainability.

4-6 PPS0122201258NWO

Table 4-10. Stakeholder Impact / Marketability Evaluation

Points	Criteria
5	Minimal Rate Impact Due to LCC Savings Substantial Improvement to Ambient Air Quality and Reduction to GHG Emissions
2.5	Moderate Rate Impact Due to LCC Savings Moderate Improvement to Ambient Air Quality and Reduction to GHG Emissions
0	Significant Rate Increase due to Poor LCC Savings No Improvement or Minimal Improvement to Ambient Air Quality and GGH Emissions

4.2 Evaluation Matrix

An evaluation matrix considering cost and non-cost factors provides an objective method to evaluate multiple alternatives. For this Power Master Plan, Table 4-11 was discussed and completed with SWBNO during the Alternatives Evaluation Workshop on November 6, 2019.

Table 4-11. Evaluation Matrix

Evaluation Factor	Maximum Points	Alternative 0	Alternative 1	Alternative 2	Alternative 3	Alternative 4
Life Cycle Cost	35	0	35	28	32	18
Improved Reliability / Resiliency	25	0	12.5	25	25	25
Greenhouse Gas Emissions / Sustainability	10	0	6	8	10	8
Capital Cost	5	5	3.5	2.5	2.5	2.5
Elimination of 25 Hz Systems	5	0	2.5	5	5	5
Location	5	0	4	4	4	5
Operability	5	0	0	2.5	5	2.5
Maintainability	5	0	0	5	2.5	5
Stakeholder Impact / Marketability	5	0	0	5	5	5
Total	100	5.0	63.5	85.0	90.5	75.5

Based on this evaluation, Alternatives 2 or 3 are the best available options, with a RICE engine solution assessed as slightly more favorable than a combustion turbine solution, primarily due to cost and operational flexibility.

PPS0122201258NWO 4-7

5. Phasing Plan

To validate the feasibility of the Power Master Plan, the evaluation team was tasked with preparing a feasible implementation strategy, including a phasing plan that outlines a path for continuous operation throughout construction. A preliminary phasing plan was prepared and discussed with SWBNO which estimated conversion of the entire 25 Hz system within 5 years, and included fewer SFCs. Due to the approximate \$500 million cost, SWBNO suggested evaluation of a phasing plan where the 25 Hz demand loads could be transitioned opportunistically as funding becomes available.

The phasing plan presented in this report considers installation of the new West Power Complex including new substation, new generators, and new SFCs with a clear point of demarcation before the rest of the assets are transitioned. The strategy outlined in this document is adaptable and may need to be modified to accommodate the availability of funding, coordination with other related projects, availability of qualified local contractors, and many other factors which are currently unknown. The proposed phasing considers implementation of Alternative 2 or 3, which includes decommissioning all 25 Hz steam turbines, a new substation and three new 60 Hz generating units with a capacity of 18-22 MW each (referred to in the tables below as T7, T8, and T9).

To ensure that adequate emergency backup power is available at all times throughout implementation, the following basic phases prioritize the installation of new generation assets before existing generation assets are retired.

- Baseline: Existing power inventory considering the operational status of all assets in November 2019.
- Phase 1: Initial Work (Construction of new West Power Complex and deployment of new generating assets)
 - Phase 1A: Add one 25 MW SFC (Note that SWBNO has already undertaken project planning for this work. Although it is anticipated that this equipment will be located within the existing power plant complex, it is considered new generation so is included in Phase 1.)
 - Phase 1B: Add two more 25 MW SFCs (one standby); Install West Power Complex to include New Substation, T7, T8, T9, New Plant Control System and 60 Hz ring bus
 - Phase 1C: Remove T1, T3, T4, T5, and all associated equipment.
- Phase 2: DPS Conversions and Power Distribution Network Upgrades (Upon completion of the new WPC, conversion of the loads from 25 Hz to 60 Hz can begin).
 - Phase 2A: Connect Diesel Gens at DPS- 6, 7; Convert DPS-6, 7, 12, 17 to 60 Hz
 - Phase 2B: Convert more 25 Hz load to 60 Hz
 - Phase 2C: Connect Diesel Gen at DPS-19; Convert more 25 Hz load to 60 Hz
 - Phase 2D: Convert all remaining 25 Hz load to 60 Hz

Aligning with the alternative evaluation and key Guiding Principles of the study, Table 5-1 identifies how the phasing plan addresses the overall Problem Statement.

Table 5-1. Phasing Plan Solutions

Key Components	Solution		
Public Welfare			
Eliminate Cooling Water Cross-Connection	Cross-connect concerns are eliminated when the existing 25 Hz generators are decommissioned at the completion of Phase 1C.		
Island Mode Operation	Island Mode capability exists today and will remain fully operational throughout construction. At the completion of Phase 1, this capability will transition to the new equipment at the WPC so that the older existing assets can be retired. Existing distributed generators at DPS 6 and DPS 7 will be added to the Power Distribution Network during Phase 2.		

PPS0122201258NWO 5-1

Table 5-1. Phasing Plan Solutions

Key Components	Solution			
Greenhouse Gas Emissions and Pollution Control	GHG emissions are reduced at the completion of Phase 1 once the substation is installed and SWBNO shifts to primarily energy purchase instead of energy production.			
	Additionally, all new equipment installed in Phase 1 will include emissions controls and/or permitting revisions as required for compliance with state and federal laws.			
Efficiency, Sustainability, and	d Cost of Operation			
Reduced Steam Generation	All steam generation and use will be retired at the completion of Phase 1, and natural gas purchase would only be required when Entergy is unavailable or when demand exceeds substation capacity.			
Equipment Selection				
Generating Assets	At the completion of Phase 1, three new turbines or reciprocating engines (T7, T8, and T9) will be in place at the West Power Complex.			
	At the completion of Phase 1C, STG-1, STG-3, STG-4, CTG-5 will be retired.			
	During Phase 1, 50 MW SFC capacity (plus 25 MW redundant backup capacity) will be installed to convert power from the newly installed 60 Hz generating assets to 25 Hz. The SFCs will be required until all 25 Hz loads are converted to 60 Hz at the end of Phase 2.			
Frequency Conversion	New SFCs will be in place to convert the 60 Hz power for distribution at 25 Hz.			
Electric Demand Assets	After completion of Phase 1, SWBNO may proceed with the opportunistic replacement of all 25 Hz pump motors, switchgear and other electrical components with new 60 Hz equipment and installation of gearboxes above maximum considered flood elevation. This work will be phased over multiple years. New equipment will be located above the maximum considered flood elevation.			
SWBNO Network Feeders	Through Phase 2, all remaining 6.6 kV feeders in the SWBNO Power Distribution Network not previously replaced in the HMGP project will be replaced with new 13.8 kV feeders.			
Substation Capacity				
Entergy Feeders	Phase 1 includes installation of a new Entergy substation. Any other Entergy connections may be considered backup only.			
	All SWBNO generating assets will become backup only for when Entergy is not available, or demand exceeds substation capacity.			

5.1 Basis of Phasing

The following basis of project phasing was developed to maintain generation at or above demand during each phase.

This plan presented involves an aggressive development of the WPC for several reasons which include the following:

- 1) The existing power plant systems face a number of challenges related to age, condition, efficiency, and obsolescence that compromise the reliability and resiliency of service to the drainage pump stations. Prompt action is urgently needed to address these challenges.
- 2) Further investment in the rehabilitation of equipment and systems that have far exceeded their useful service life does not constitute good investment value.
- 3) Retirement of STG-1, STG-3, STG-4, CTG-5, and the boiler plant will allow for retirement of all remaining equipment which is cross-connected with City Water systems. This is a public health and safety concern that needs to be accomplished in a timely fashion.
- 4) Major cost savings are realized from the conversion of natural gas and diesel fueled equipment to purchasing electric power, which will have an immediate impact on reduced operational expense upon implementation.

Phase 1 is intended to take a big step toward solving the most urgent needs faced by SWBNO in the operation of the Carrollton Power Plant. This will require the construction of a new WPC including site

5-2 PPS0122201258NWO

preparation, construction of a new plant building shell, installation of new dual fuel-generating assets, 60 Hz ring bus switchgear, plant control system, a 50 MW substation, and additional SFC capacity. This will allow generation of 60 Hz power from modern generating sources and will allow all 25 Hz self-generated power to originate from these new sources. As the new generating assets become operational, the existing assets, including steam turbine generators, can be retired. At that time, a continuous source of gas from the utility is no longer necessary as the need to keep the steam plant on hot standby has been eliminated. The normal operations load, ("dry weather" load or "house load") can be satisfied by power delivery from Entergy via the new substation. Because of the poor heat rate of the steam generating equipment, significant operating cost savings with respect to current operation can begin to be realized at that time.

Phase 1: Construction of West Power Complex

Phase 1A: Installation of 25 MW Static Frequency Changer

The installation of a 25 MW SFC is proposed as the first phase of this project, which will convert 60 Hz power from Turbine 6 to 25 Hz power, reducing the demand on the existing steam generation equipment.

Phase 1B: Install New 60 Hz Generators

After the SFC has been installed, the next phase will be to install three new 60 Hz generators (T7, T8, and T9) and a new 60 Hz ring bus. This will result in an increased capacity of 60 Hz generation; however, the drainage pump stations will still operate using 25 Hz power. Therefore, increasing the capacity of the SFC from 25 MW to 75 MW is also recommended. This phase also includes the installation of a new substation, connecting the CTG-6 bus to the new 60 Hz ring bus and adding the WPC Control Building.

Phase 1C: Retire All 25 Hz Steam Power Generation Turbines

Upon completion of Phase 1, sufficient 60-Hz power generation and frequency changers to meet the 25 Hz load demand will be available within the system. At this point, SWBNO will be able to retire all the existing steam turbines and associated equipment. After this phase, the only remaining 25 Hz power generation equipment will include the five EMD generators.

Phase 2: DPS Conversions and Power Distribution Network Upgrades

With the completion of the WPC, the conversion of the feeders and pump stations from 25 Hz to 60 Hz can be performed independently. Pump station and associated feeder conversion can be performed when funding and appropriate resources are available. In reviewing the electrical distribution, an observation was made that the system can be envisioned as consisting of three separate power distribution "highways." In addition to supplying power to its own pumps, an individual pump station may also serve as a power distribution center to other pump stations. A good example is DPS-6, which includes 15 pumps but also delivers power to DPS-7 and DPS-12. The following three main power highways are shown on a simplified system asset schematic (Figure 5-1):

- **Power Highway 1 –** DPS-6, 7, and 12
- Power Highway 2 DPS-1, 2, and Sewer Station A
- Power Highway 3 DPS-3 and 4

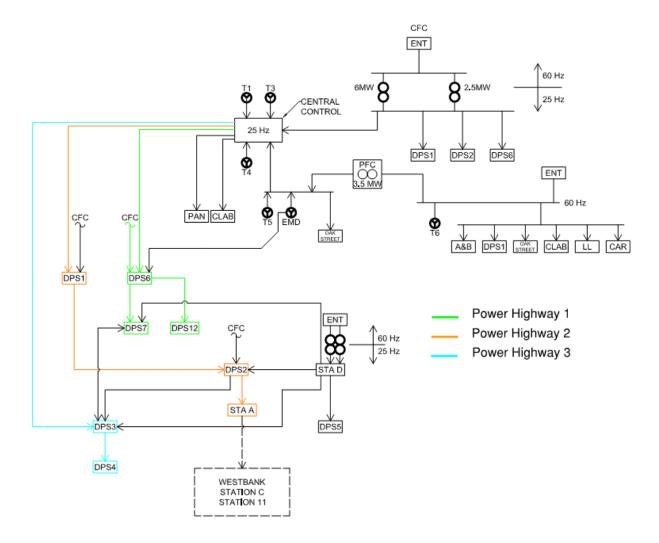


Figure 5-1. Existing Power System Asset Schematic with Power Highways

The individual components of Phase 2 focus on conversion of these highways and associated assets including the associated pumping equipment, motors, electrical switchgear, and feeders. It is recommended that work involving pump station conversions be scheduled outside of hurricane season. This minimizes the exposure to significant rain events.

Conversion of a single 25 Hz pump will be accomplished by installation of a new 60/25 gear reducer along with a new motor and switchgear for that pump. This type of conversion has been performed previously on pumps at DPS-6 and DPS-7. Prior to the beginning of each phase, careful planning will be necessary to ensure all equipment required for the transition is on site and the installation contractor is mobilized. Work on each pump must be coordinated such that all mechanical modifications are performed concurrently with electrical modifications. With proper planning it is expected that only one pump will be out of service at any one time.

During a pump station conversion, the station will be in a temporary "hybrid" configuration. The newly converted portion will operate as a 60 Hz station and the portion remaining will operate as a 25 Hz station. At that time, it is envisioned that a minimum of two feeders would be required to power each section for a total of four feeders to the station. When the final pump in that station is converted to 60 Hz, the existing 25 Hz feeders can be disconnected.

5-4 PPS0122201258NWO

Phase 2A: Convert Drainage Pump Stations to 60 Hz and Install 60 Hz Switchgear

During Phase 2A, it is recommended that SWBNO begin to convert the drainage pump stations to 60 Hz. DPS-6, DPS-7 (partial), DPS-12, and DPS-17 (partial) are recommended to be the first drainage pump stations to be converted to 60 Hz since they are included on the first feeder highway. In addition to partially converting DPS-17 to 60 Hz, it is recommended that a new 60 Hz switchgear be installed at DPS-17 during this phase to allow for increased connectivity and flexibility to the rest of the SWBNO Power Distribution Network.

Phase 2B: Convert Drainage Pump Stations to 60 Hz and DPS-5 to an Independent Station

In this phase, SWBNO will continue conversion of the pump stations by completing the 60 Hz conversion of DPS-7 and replacing electrical feeders that are associated with DPS-7. It is also recommended that SWBNO connect the Pritchard and I-10 drainage pump stations to the network. Additionally, during this phase, DPS-5, located on the other side of the Industrial Canal, is removed from the SWBNO Power Distribution Network and converted to an independent 60 Hz drainage pump station by adding redundant generation capacity.

Phase 2C: Convert Drainage Pump Stations to 60 Hz

This phase continues converting drainage pump stations from 25 Hz to 60 Hz. In this phase, DPS-1 and DPS-2 (partial) will be converted to 60 Hz. Additionally, DPS-19 will be added to the network.

Phase 2D: Convert Drainage Pump Stations to 60 Hz and Retire Frequency Changers

This phase continues converting drainage pump stations from 25 Hz to 60 Hz. In this phase, the remaining equipment associated with DPS-2 will be converted; along with DPS-3, DPS-4, Panola and Claiborne potable water pump stations will be converted to 60 Hz. Additionally, the Carrollton Frequency Changers and frequency changers at DPS-17 will be retired, as 25 Hz demand has been removed.

Detailed Phasing Diagrams included in Appendix H outline the major work scope items, the approximate amount of power converted to 60 Hz, and the approximate quantity of new feeder cables added in each proposed phase.

5.2 Power Inventory

To validate the feasibility of any phasing strategy, the generating capacity vs. system demand must be examined at the completion of each phase. This involves a review of both 25 Hz and 60 Hz systems. Each system is analyzed assuming the largest 25 Hz generator is out of service, then repeated assuming the largest 60 Hz generator is out of service. These assumptions reflect variations of the Firm Reliable capacity requirement. Analysis of each system (25 Hz and 60 Hz) is important because generation capacity is shared across the frequency changers. Credit is taken for energy transfer across the SFC; however, appropriate limitations are applied which consider SFC capacity as well as the limitation of excess capacity from the adjacent system. The results are presented as eight data points at the completion of each phase.

The Power Inventory Graphs (Figures 5-2 through 5-6 on the following pages) represent the SWBNO power asset inventory when considering the largest 25 Hz generator out of service and the largest 60 Hz generator out of service. By utilizing a graphical summary of the power assets at each phase, any deficits in the power system are clearly evident. These graphs are also included in Appendix H after the phasing diagrams.

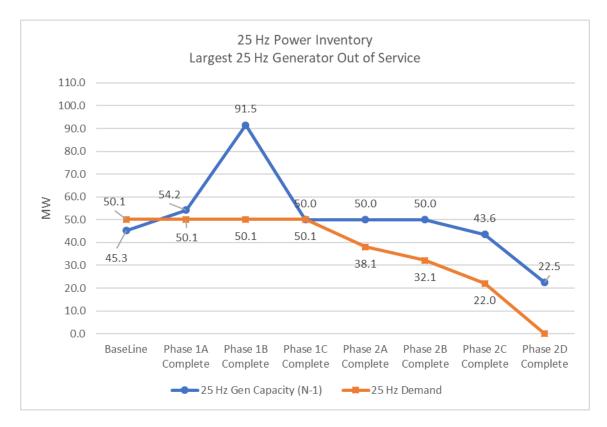


Figure 5-2. 25 Hz Power Inventory, Largest 25 Hz Generator Out of Service

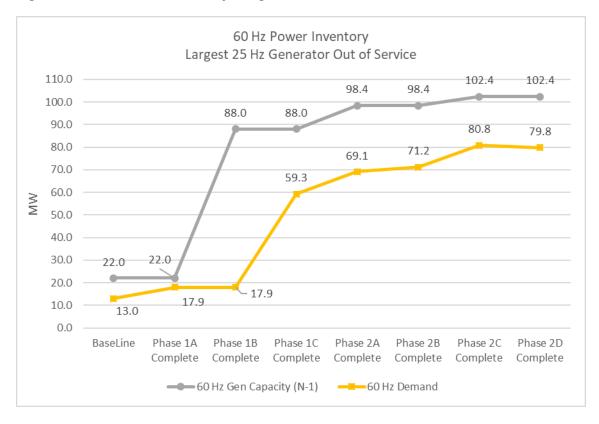


Figure 5-3. 60 Hz Power Inventory, Largest 25 Hz Generator Out of Service

5-6 PPS0122201258NWO

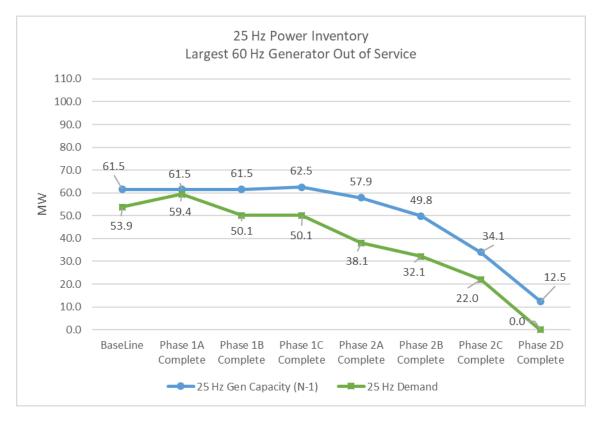


Figure 5-4. 25 Hz Power Inventory, Largest 60 Hz Generator Out of Service

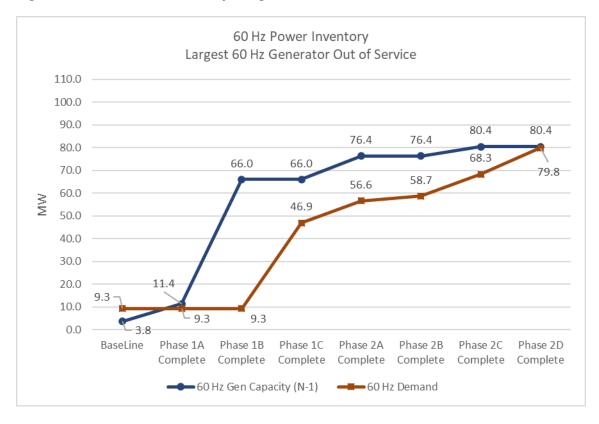


Figure 5-5. 60 Hz Power Inventory, Largest 60 Hz Generator Out of Service

PPS0122201258NWO 5-7

The system in its current configuration exhibits a minimal deficit of Firm Reliable generating capacity on both the 25 Hz and the 60 Hz systems. Two ongoing projects which affect the Power Inventory are the CP-1370A 60 Hz Switchgear Project and the installation of the SFC (Phase 1A discussed above). These projects will facilitate full utilization of T6 generating capacity as well as increase the amount of energy that can be transferred across the 25 Hz to 60 Hz system interface in either direction. Completion of these projects will essentially eliminate the generation shortfall on both 25 Hz and 60 Hz systems.

Note: Figures 5-2 through 5-5 indicate only a slight deficit in 25 Hz generating capacity in the baseline scenario when the largest 25 Hz generator is out of service. Although this Power Master Plan does not evaluate a scenario when a second generator is out of service, a quick evaluation of the current state of the system was conducted following the recent failure of T5. Figure 5-6 indicates a significant deficit in the Firm Reliable generating capacity of the existing system. It is recommended that the generating capacity lost with T-5 be replaced as soon as possible.

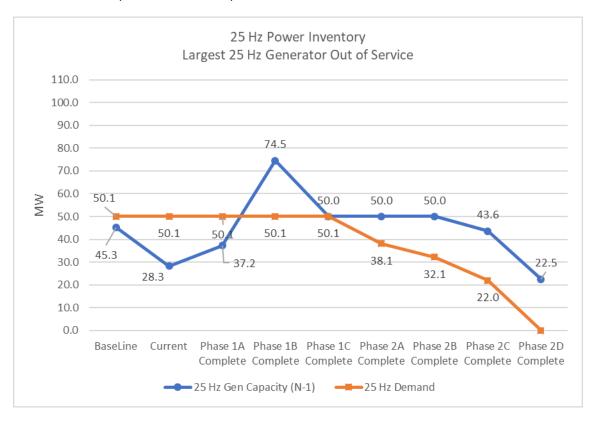


Figure 5-6. 25 Hz Power Inventory, Largest 25 Hz Generator Out of Service, Current State

5-8 PPS0122201258NWO

6. Recommendations

Based on the findings presented in this report, the following items are recommended as next steps:

- Finalize negotiations on the new Entergy substation, and begin construction.
- Complete the work that is currently in progress:
 - 1370A Switchgear / Transformer Project
 - Procurement and installation of a new 25 MW SFC
 - Upgrades to T-6 to allow for cold weather operation
- Begin preparation of performance specifications for major long-lead time equipment.
- Prepare a conceptual level design to accommodate updated cost estimates of preferred alternative to be used in financing discussions.
- Refine phasing of preferred alternative to mitigate loss of T-5.
- Pursue project financing options discussed in the Financing Options for Power Master Plan Alternatives technical memorandum presented in Appendix I.

PPS0122201258NWO 6-1

Appendix A Asset Lists

1	Asset List - Pump Loads												
1	Pump Station		Motor Hz	KW	Equip. Number	Pump		Capacity		Pump	Diameter		Secondar y Feeders
1	1	1					1991				11	-	-
1	1	1					1020			8			- 2 A C
1	<u> </u>	<u> </u>										202	2-AC 204
1	1	1										202	204
1	1	1	25			12' A	1929	550		5.75		302	304
1	1	1					1929			5.75		302	304
1	1	<u>l</u> 1											304
1	<u> </u>	<u> </u>										302	304
2	1	1										2-AC	46
2	2	1	25	1492	DPS02-HPC-PMP	11' C	1914	1000	cfs		11	18	46
2		1										24	304
2		1										204	224
2		<u> </u>											224 224
3		1										204	224
3		1					1930	1000	cfs			340	180
3		1										312	432
3		1								5 1 4		506	508 408
3		<u> </u>											408
4		1								3.11		506	508
4	3	1	25	44.76		3' CD 2 (L/R)	1916	40	cfs		3	340	180
4		1								12		340	432
4		<u>l</u>											432
4		1 1a										-	- 432
S	4											-	-
S		1										400	432
S		1										410	20
S		<u>l</u> 1											410
S		1					1714			14		410	20
S		1										410	20
6											<u> </u>	-	-
6							1004			10		-	-
6												-	-
6 1 25 1492 DPS06-HPE-PMP 14' D 1928 1000 cfs 14 14 2216 6 1 25 1492 DPS06-HPE-PMP 14' E 1928 1000 cfs 14 14 316 6 1 25 1492 DPS06-HPE-PMP 14' E 1928 1000 cfs 14 14 316 6 1 25 1492 DPS06-HPE-PMP 14' G 1984 1000 cfs 14 14 316 6 1 25 1492 DPS06-HPG-PMP 14' G 1984 1000 cfs 14 151 6 1 25 895.2 DPS06-HPG-PMP 14' G 1984 1000 cfs 12 14 516 6 1 25 895.2 DPS06-HPG-PMP 12' A 1914 550 cfs 12 414 6 1 a 60 522.2 DPS06-HPB-PMP 12' B 1914 550 cfs 16 6 - 6 1a 60 522.2 DPS06-HPB-PMP 6' ±1V 1983 250 cfs 16 6 - 6 1a 60 522.2 DPS06-VTP1-PMP 6' ±2V 1983 250 cfs 16 6 - 6 1a 60 522.2 DPS06-VTP1-PMP 6' ±2V 1983 250 cfs 16 6 - 6 1a 60 522.2 DPS06-VTP3-PMP 6' ±2V 1983 250 cfs 16 6 - 6 1a 60 522.2 DPS06-VTP3-PMP 6' ±2V 1983 250 cfs 16 6 - 6 1a 60 522.2 DPS06-VTP3-PMP 8' ±2V 1983 250 cfs 16 6 - 6 1a 60 522.2 DPS06-VTP3-PMP 8' ±2V 1983 250 cfs 16 6 - 6 1a 60 522.2 DPS06-VTP3-PMP 8' ±2V 1983 250 cfs 16 6 - 6 1a 60 522.2 DPS06-VTP3-PMP 8' ±2V 1983 250 cfs 16 6 - 7 1a 60 522.2 DPS06-CD1-PMP 3' CD ±2 1984 90 cfs 3 3 216 7 1a 60 1865 DPS07-HPD-PMP 14' DP 1998 1000 cfs 14 4 - 7 1a 25 895.2 DPS07-HPA-PMP 12' A 1931 550 cfs 12 31 7 1 25 895.2 DPS07-HPA-PMP 12' A 1931 550 cfs 12 31 7 1 25 186.5 DPS07-CD1-PMP 3' CD ±2 1984 90 cfs 3 3 41 7 1 25 186.5 DPS07-CD1-PMP 3' CD ±2 1984 90 cfs 3 3 41 7 1 25 186.5 DPS07-CD1-PMP 3' CD ±2 1984 90 cfs 3 3 41 7 1 25 186.5 DPS07-CD1-PMP 6' ±1 1984 250 cfs 12.5 6 - 10 3 60 522.2 DPS10-VTP1-PMP 6' ±1 1984 250 cfs 21.5 6 - 10 3 60 522.2 DPS10-VTP1-PMP 6' ±1 1984 250 cfs 21.5 6 - 11 3 60 50.8 DPS07-CD1-PMP 3' CD ±2 1984 1000 cfs 14 14 C 7 1 25 186.5 DPS07-CD1-PMP 3' CD ±2 1984 1000 cfs 14 10 13 60 522.2 DPS10-VTP1-PMP 6' ±1 1984 250 cfs 21.5 6 - 10 3 60 522.2 DPS10-VTP1-PMP 6' ±1 1984 250 cfs 21.5 6 - 11 3 60 50.8 DPS11-HPD-PMP 12' DP 1990 570 cfs 21.5 6 - 11 3 60 50.8 DPS11-HPD-PMP 12' DP 1990 570 cfs 21.5 6 - 12 1 2 5 1492 DPS11-HPD-PMP 12' DP 1990 570 cfs 12 12 2 - 11 1 3 60 50.8 DPS11-HPD-PMP 12' DP 1990 570 cfs 14 14 6 61 13 3 60 50.8 DPS11-HPD-PMP 10' ±1 1981 1000 cfs 14 14 10 61 13 3 60 50.8 DPS11-HPD-PMP 6' ±1		1a										130	14CD
6	6	1						1000				216	130
6		1										216	130
6		1								14		316	314
6		1 1											612 416
6		1										414	416
6 la 60 522.2 DPS06-VTP3-PMP 6 #3V* 1983 250 cfs 16 6 - 6 la 60 522.2 DPS06-VTP3-PMP 6 #4V* 1983 250 cfs 16 6 - 6 la 60 522.2 DPS06-CD1-PMP 3 *CD#1 1984 90 cfs 3 216 6 l 1 25 335.7 DPS06-CD1-PMP 3 *CD#2 1984 90 cfs 3 216 6 l 1 25 335.7 DPS06-CD1-PMP 3 *CD#2 1984 90 cfs 3 216 6 l 1 25 335.7 DPS06-CD1-PMP 3 *CD#2 1984 90 cfs 3 216 7 la 60 1865 DPS07-HPD-PMP 14* D* 1908 1000 cfs 14 - 7 l 25 895.2 DPS07-HPD-PMP 12* A 1931 550 cfs 12 316 7 l 25 895.2 DPS07-HPC-PMP 12* A 1931 550 cfs 12 316 7 l 25 895.2 DPS07-HPC-PMP 14* C 1908 1000 cfs 14 14C 7 l 25 186.5 DPS07-CD2-PMP 3 *CD#1 70 cfs 3 414 10 3 60 522.2 DPS10-VTP1-PMP 6 #1* 1984 250 cfs 21.5 6 - 10 3 60 522.2 DPS10-VTP2-PMP 6 #2* 1984 250 cfs 21.5 6 - 10 3 60 522.2 DPS10-VTP3-PMP 6 #2* 1984 250 cfs 21.5 6 - 10 3 60 522.2 DPS10-VTP3-PMP 6 #2* 1984 250 cfs 21.5 6 - 11 3 60 932.5 DPS11-HPD-PMP 12* D* 1990 570 cfs 12 12 - 11 3 60 932.5 DPS11-HPD-PMP 12* D* 1990 570 cfs 12 12 - 11 3 60 932.5 DPS11-HPD-PMP 12* D* 1990 570 cfs 12 12 - 11 3 60 932.5 DPS11-HPB-PMP 12* D* 1990 570 cfs 12 12 12 - 11 3 60 111.9 DPS11-CD1-PMP 8 *B 1952 250 cfs 8 8 8 28/ 11 1 2 5 298.4 DPS11-HPB-PMP 12* D* 1990 570 cfs 12 12 12 - 11 3 60 111.9 DPS11-CD1-PMP 10* HPS 1981 1000 cfs 14 14 612 13 3 60 1865 DPS13-HPS-PMP 10* HPS 1981 1000 cfs 12 10 13 3 60 1865 DPS13-HPS-PMP 10* HPS 1981 1000 cfs 12 10 13 3 60 1865 DPS13-HPS-PMP 10* HPS 1981 1000 cfs 12 10 13 3 60 522.2 DPS13-HPS-PMP 10* HPS 1981 1000 cfs 12 10 13 3 60 522.2 DPS13-HPS-PMP 10* HPS 1981 1000 cfs 12 10 13 3 60 50.8 DPS13-HPS-PMP 10* HPS 1981 1000 cfs 12 10 13 3 60 50.8 DPS13-HPS-PMP 10* HPS 1981 1000 cfs 17 6 14 3 60 596.8 DPS14-VTP1-PMP 6 #2* 1981 50 cfs 5 5.7 6 14 3 60 596.8 DPS14-VTP1-PMP 6 #2* 1981 50 cfs 17 6 14 3 60 596.8 DPS14-VTP1-PMP 6 #2* 1981 50 cfs 17 6 14 3 60 596.8 DPS14-VTP1-PMP 6 #2* 300 cfs 17 6	6	1a								16		-	-
6 la 60 522.2 DPS06-VTP4-PMP 6 #4V* 1983 250 cfs 16 6 - 6 1 25 335.7 DPS06-CD2-PMP 3 *CD #1 1984 90 cfs 3 216 6 1 25 335.7 DPS06-CD2-PMP 3 *CD #1 1984 90 cfs 3 216 7 la 60 1865 DPS07-HPD-PMP 14 D* 1998 1000 cfs 14 - 7 la 60 1865 DPS07-HPD-PMP 12 A 1931 550 cfs 12 31- 7 l 25 895.2 DPS07-HPC-PMP 12 A 1931 550 cfs 12 31- 7 l 25 895.2 DPS07-HPC-PMP 12 A 1931 550 cfs 12 31- 7 l 25 895.2 DPS07-HPC-PMP 3 *CD #1 70 cfs 3 41- 7 l 25 186.5 DPS07-CD2-PMP 3 *CD #1 70 cfs 3 41- 7 l 25 186.5 DPS07-CD1-PMP 3 *CD #1 70 cfs 3 41- 7 l 25 186.5 DPS07-CD1-PMP 3 *CD #1 70 cfs 3 41- 7 l 25 186.5 DPS07-CD2-PMP 3 *CD #1 984 250 cfs 21.5 6 - 10 3 60 522.2 DPS10-VTP1-PMP 6 #1* 1984 250 cfs 21.5 6 - 10 3 60 522.2 DPS10-VTP2-PMP 6 #2* 1984 250 cfs 21.5 6 - 10 3 60 522.2 DPS10-VTP2-PMP 6 #3* 1984 250 cfs 21.5 6 - 10 3 60 522.2 DPS10-VTP2-PMP 6 #4* 1984 250 cfs 21.5 6 - 11 3 60 932.5 DPS11-HPD-PMP 12 D* 1990 570 cfs 12 12 12 - 11 3 60 932.5 DPS11-HPD-PMP 12 D* 1990 570 cfs 12 12 12 - 11 1 1 25 298.4 DPS11-HPD-PMP 12 D* 1990 570 cfs 12 12 12 - 11 1 1 25 298.4 DPS11-HPA-PMP 8 *A 1953 250 cfs 8 8 8 28/ 11 1 3 60 11.9 DPS11-HPA-PMP 8 *B 1952 250 cfs 8 8 8 28/ 11 3 3 60 1865 DPS13-HPA-PMP 8 *B 1952 250 cfs 8 8 8 28/ 11 3 3 60 1865 DPS13-HPA-PMP 10 "#5-D* 1981 1000 cfs 14 14 612 13 3 60 1865 DPS13-HPA-PMP 10 "#5-D* 1981 1000 cfs 12 10 11 10 13 3 60 1865 DPS13-HPA-PMP 10 "#5-D* 1981 1000 cfs 12 10 11 10 11 11 11 11 11 11 11 11 11 11												-	-
6												-	-
6 1 25 335.7 DPS06-CD2-PMP 3' CD#2 1984 90 cfs 3 216 7 1a 60 1865 DPS07-HPD-PMP 14' P* 1908 1000 cfs 14 7 1 25 895.2 DPS07-HPA-PMP 12' A 1931 550 cfs 12 312 7 1 25 895.2 DPS07-HPA-PMP 12' C 1908 1000 cfs 14 14C 7 1 25 186.5 DPS07-CD2-PMP 3' CD#2 70 cfs 3 414 10 3 60 522.2 DPS10-VTP1-PMP 6' #1* 1984 250 cfs 21.5 6 - 10 3 60 522.2 DPS10-VTP4-PMP 6' #2* 1984 250 cfs 21.5 6 - 10 3 60 522.2 DPS10-VTP4-PMP 6' #2* 1984 250 cfs<		1a 1								16		216	130
7 1a 60 1865 DPS07-HPD-PMP 14' D* 1908 1000 cfs 14 7 1 25 895.2 DPS07-HPA-PMP 12' A 1931 550 cfs 12 314 7 1 25 895.2 DPS07-PD-PMP 14' C 1908 1000 cfs 14 14C 7 1 25 186.5 DPS07-CD1-PMP 3' CD #2 70 cfs 3 414 7 1 25 186.5 DPS07-CD2-PMP 3' CD #2 70 cfs 21.5 6 - 10 3 60 522.2 DPS10-VTP1-PMP 6' #1* 1984 250 cfs 21.5 6 - 10 3 60 522.2 DPS10-VTP3-PMP 6' #2* 1984 250 cfs 21.5 6 - 10 3 60 522.2 DPS10-VTP3-PMP 6' #3* 1984 250 cfs </td <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>216</td> <td>130</td>		1										216	130
7 1 25 895.2 DPS07-HPC-PMP 14' C 1908 1000 cfs 14 14C 7 1 25 186.5 DPS07-CD1-PMP 3' CD #2 70 cfs 3 414 7 1 25 186.5 DPS07-CD2-PMP 3' CD #2 70 cfs 3 414 10 3 60 522.2 DPS10-VTP1-PMP 6' #1* 1984 250 cfs 21.5 6 10 3 60 522.2 DPS10-VTP2-PMP 6' #2* 1984 250 cfs 21.5 6 10 3 60 522.2 DPS10-VTP3-PMP 6' #3* 1984 250 cfs 21.5 6 10 3 60 522.2 DPS10-VTP3-PMP 6' #3* 1984 250 cfs 21.5 6 10 3 60 522.2 DPS11-HPD-PMP 6' #4* 1984	7	1a	60	1865	DPS07-HPD-PMP	14' D*	1908	1000	cfs		14	-	-
7 1 25 186.5 DPS07-CD1-PMP 3' CD #1 70 cfs 3 414 7 1 25 186.5 DPS07-CD2-PMP 3' CD #2 70 cfs 3 414 10 3 60 522.2 DPS10-VTP1-PMP 6' #1* 1984 250 cfs 21.5 6 - 10 3 60 522.2 DPS10-VTP2-PMP 6' #2* 1984 250 cfs 21.5 6 - 10 3 60 522.2 DPS10-VTP3-PMP 6' #3* 1984 250 cfs 21.5 6 - 10 3 60 522.2 DPS10-VTP4-PMP 6' #4* 1984 250 cfs 21.5 6 - 10 3 60 522.2 DPS11-HPD-PMP 12' D* 1990 570 cfs 21.5 6 - 11 3 60 932.5 DPS11-HPD-PMP 12' D* 1990 </td <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>314</td> <td>312</td>		1										314	312
7 1 25 186.5 DPS07-CD2-PMP 3' CD#2 70 cfs 3 414 10 3 60 522.2 DPS10-VTP1-PMP 6' #1* 1984 250 cfs 21.5 6 - 10 3 60 522.2 DPS10-VTP3-PMP 6' #2* 1984 250 cfs 21.5 6 - 10 3 60 522.2 DPS10-VTP3-PMP 6' #3* 1984 250 cfs 21.5 6 - 10 3 60 522.2 DPS10-VTP4-PMP 6' #4* 1984 250 cfs 21.5 6 - 10 3 60 932.5 DPS11-HPD-PMP 12' D* 1990 570 cfs 12 12 - 11 3 60 932.5 DPS11-HPB-PMP 12' B* 1990 570 cfs 12 12 - 11 1 25 298.4 DPS11-HPB-PMP		1					1908					14CD	180
10	<u> </u>	1 1										414	412 412
10 3 60 522.2 DPS10-VTP2-PMP 6 #2* 1984 250 cfs 21.5 6 - 10 3 60 522.2 DPS10-VTP3-PMP 6 #3* 1984 250 cfs 21.5 6 - 10 3 60 522.2 DPS10-VTP4-PMP 6' #4* 1984 250 cfs 21.5 6 - 11 3 60 522.2 DPS11-HPD-PMP 12' D* 1990 570 cfs 12 12 - 11 3 60 932.5 DPS11-HPE-PMP 12' E* 1990 570 cfs 12 12 - 11 1 25 298.4 DPS11-HPE-PMP 8' A 1953 250 cfs 8 8 28/8 11 1 25 298.4 DPS11-HPB-PMP 8' B 1952 250 cfs 8 8 28/8 11 3 60 11.9	· · · · · · · · · · · · · · · · · · ·	3					1984			21.5		-	712
10 3 60 522.2 DPS10-VTP4-PMP 6' #4* 1984 250 cfs 21.5 6 11 3 60 932.5 DPS11-HPD-PMP 12' D* 1990 570 cfs 12 12 11 3 60 932.5 DPS11-HPE-PMP 12' E* 1990 570 cfs 12 12 11 1 25 298.4 DPS11-HPA-PMP 8' A 1953 250 cfs 8 8 28/ 11 1 25 298.4 DPS11-HPB-PMP 8' B 1952 250 cfs 8 8 28/ 11 3 60 111.9 DPS11-CD1-PMP 30" CD#1* 1953 50 cfs 8 2.5 12 1 25 1492 DPS12-HPD-PMP 14' D 1961 1000 cfs 14 14 612 13 3 60 1865 </td <td>10</td> <td>3</td> <td></td> <td>522.2</td> <td>DPS10-VTP2-PMP</td> <td>6' #2*</td> <td></td> <td></td> <td>cfs</td> <td></td> <td>6</td> <td>-</td> <td></td>	10	3		522.2	DPS10-VTP2-PMP	6' #2*			cfs		6	-	
11 3 60 932.5 DPS11-HPD-PMP 12' D* 1990 570 cfs 12 12 - 11 3 60 932.5 DPS11-HPE-PMP 12' E* 1990 570 cfs 12 12 - 11 1 25 298.4 DPS11-HPA-PMP 8' A 1953 250 cfs 8 8 28/ 11 1 25 298.4 DPS11-HPB-PMP 8' B 1952 250 cfs 8 8 28/ 11 3 60 111.9 DPS11-CD1-PMP 30" CD#1* 1953 50 cfs 8 2.5 - 12 1 25 1492 DPS12-HPD-PMP 14' D 1961 1000 cfs 14 14 612 13 3 60 1865 DPS13-HP5-PMP 10' #4-D* 1981 1000 cfs 12 10 13 3 60 1865 DPS13-												-	
11 3 60 932.5 DPS11-HPE-PMP 12' E* 1990 570 cfs 12 12 12 11 1 25 298.4 DPS11-HPA-PMP 8' A 1953 250 cfs 8 8 28/ 11 1 25 298.4 DPS11-HPB-PMP 8' B 1952 250 cfs 8 8 28/ 11 3 60 111.9 DPS11-CD1-PMP 30" CD #1* 1953 50 cfs 8 2.5 12 1 25 1492 DPS12-HPD-PMP 14' D 1961 1000 cfs 14 14 612 13 3 60 1865 DPS13-HP4-PMP 10' #4-D* 1981 1000 cfs 12 10 13 3 60 1865 DPS13-HP5-PMP 10' #5-D* 1981 1000 cfs 12 10 13 3 60 1865 DPS13-HP6-PMP												-	
11 1 25 298.4 DPS11-HPA-PMP 8' A 1953 250 cfs 8 8 28A 11 1 25 298.4 DPS11-HPB-PMP 8' B 1952 250 cfs 8 8 28A 11 3 60 111.9 DPS11-CD1-PMP 30" CD #1* 1953 50 cfs 8 2.5 12 1 25 1492 DPS12-HPD-PMP 14' D 1961 1000 cfs 14 14 612 13 3 60 1865 DPS13-HP4-PMP 10' #4-D* 1981 1000 cfs 12 10 13 3 60 1865 DPS13-HP5-PMP 10' #5-D* 1981 1000 cfs 12 10 13 3 60 1865 DPS13-HP6-PMP 10' #6* 1981 1000 cfs 11 10 13 3 60 1865 DPS13-HP6-PMP 10' #6*												-	-
11 1 25 298.4 DPS11-HPB-PMP 8' B 1952 250 cfs 8 8 28A 11 3 60 111.9 DPS11-CD1-PMP 30" CD #1* 1953 50 cfs 8 2.5 - 12 1 25 1492 DPS12-HPD-PMP 14' D 1961 1000 cfs 14 14 612 13 3 60 1865 DPS13-HP4-PMP 10' #4-D* 1981 1000 cfs 12 10 13 3 60 1865 DPS13-HP5-PMP 10' #5-D* 1981 1000 cfs 12 10 13 3 60 1865 DPS13-HP5-PMP 10' #6* 1981 1050 cfs 11 10 13 3 60 1865 DPS13-HP7-PMP 10' #7* 1981 1050 cfs 11 10 13 3 60 522.2 DPS13-VTP1-PMP 6' #1* <t< td=""><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>28A</td><td>28B</td></t<>		1										28A	28B
12 1 25 1492 DPS12-HPD-PMP 14' D 1961 1000 cfs 14 14 612 13 3 60 1865 DPS13-HP4-PMP 10' #4-D* 1981 1000 cfs 12 10 13 3 60 1865 DPS13-HP5-PMP 10' #5-D* 1981 1000 cfs 12 10 13 3 60 1865 DPS13-HP6-PMP 10' #6* 1981 1050 cfs 11 10 13 3 60 1865 DPS13-HP7-PMP 10' #7* 1981 1050 cfs 11 10 13 3 60 1865 DPS13-HP7-PMP 10' #7* 1981 1050 cfs 11 10 13 3 60 522.2 DPS13-VTP1-PMP 6' #1* 1981 250 cfs 6 13 3 60 513-VTP2-PMP 6' #2* 1981 50 cfs 9.5?	11	1			DPS11-HPB-PMP			250				28A	28B
13 3 60 1865 DPS13-HP4-PMP 10' #4-D* 1981 1000 cfs 12 10 13 3 60 1865 DPS13-HP5-PMP 10' #5-D* 1981 1000 cfs 12 10 13 3 60 1865 DPS13-HP6-PMP 10' #6* 1981 1050 cfs 11 10 13 3 60 1865 DPS13-HP7-PMP 10' #7* 1981 1050 cfs 11 10 13 3 60 1865 DPS13-HP7-PMP 10' #7* 1981 1050 cfs 11 10 13 3 60 522.2 DPS13-VTP1-PMP 6' #1* 1981 250 cfs 6 13 3 60 522.2 DPS13-VTP2-PMP 6' #2* 1981 250 cfs 6 13 3 60 11.9 DPS13-CD3-PMP 3' CD #3* 1981 50 cfs 9.5? 3 14 3 60 596.8 DPS14-VTP1-PMP 6' #1* 300		3										-	-
13 3 60 1865 DPS13-HP5-PMP 10' #5-D* 1981 1000 cfs 12 10 13 3 60 1865 DPS13-HP6-PMP 10' #6* 1981 1050 cfs 11 10 13 3 60 1865 DPS13-HP7-PMP 10' #7* 1981 1050 cfs 11 10 13 3 60 522.2 DPS13-VTP1-PMP 6' #1* 1981 250 cfs 6 13 3 60 522.2 DPS13-VTP2-PMP 6' #2* 1981 250 cfs 6 13 3 60 11.9 DPS13-CD3-PMP 3' CD #3* 1981 50 cfs 9.5? 3 14 3 60 596.8 DPS14-VTP1-PMP 6' #1* 300 cfs 17 6 14 3 60 596.8 DPS14-VTP2-PMP 6' #3* 300 cfs 17 6 14		2										612	
13 3 60 1865 DPS13-HP6-PMP 10' #6* 1981 1050 cfs 11 10 13 3 60 1865 DPS13-HP7-PMP 10' #7* 1981 1050 cfs 11 10 13 3 60 522.2 DPS13-VTP1-PMP 6' #1* 1981 250 cfs 6 13 3 60 522.2 DPS13-VTP2-PMP 6' #2* 1981 250 cfs 6 13 3 60 11.9 DPS13-CD3-PMP 3' CD #3* 1981 50 cfs 9.5? 3 14 3 60 596.8 DPS14-VTP1-PMP 6' #1* 300 cfs 17 6 14 3 60 596.8 DPS14-VTP2-PMP 6' #2* 300 cfs 17 6 14 3 60 596.8 DPS14-VTP3-PMP 6' #3* 300 cfs 17 6 14 3 60 596.8 DPS14-VTP3-PMP 6' #3* 300 cfs 17 6 14 3 60 596.8 DPS14-VTP4-PMP 6' #4* 300 cfs 17 6													
13 3 60 1865 DPS13-HP7-PMP 10' #7* 1981 1050 cfs 11 10 13 3 60 522.2 DPS13-VTP1-PMP 6' #1* 1981 250 cfs 6 13 3 60 522.2 DPS13-VTP2-PMP 6' #2* 1981 250 cfs 6 13 3 60 111.9 DPS13-CD3-PMP 3' CD #3* 1981 50 cfs 9.5? 3 14 3 60 596.8 DPS14-VTP1-PMP 6' #1* 300 cfs 17 6 14 3 60 596.8 DPS14-VTP2-PMP 6' #2* 300 cfs 17 6 14 3 60 596.8 DPS14-VTP3-PMP 6' #3* 300 cfs 17 6 14 3 60 596.8 DPS14-VTP3-PMP 6' #3* 300 cfs 17 6 14 3 60 596.8 DPS14-VTP4-PMP 6' #4* 300 cfs 17 6													
13 3 60 522.2 DPS13-VTP2-PMP 6' #2* 1981 250 cfs 6 13 3 60 111.9 DPS13-CD3-PMP 3' CD #3* 1981 50 cfs 9.5? 3 14 3 60 596.8 DPS14-VTP1-PMP 6' #1* 300 cfs 17 6 14 3 60 596.8 DPS14-VTP2-PMP 6' #2* 300 cfs 17 6 14 3 60 596.8 DPS14-VTP3-PMP 6' #3* 300 cfs 17 6 14 3 60 596.8 DPS14-VTP4-PMP 6' #4* 300 cfs 17 6	13	3	60	1865	DPS13-HP7-PMP	10' #7*	1981		cfs		10		
13 3 60 111.9 DPS13-CD3-PMP 3' CD #3* 1981 50 cfs 9.5? 3 14 3 60 596.8 DPS14-VTP1-PMP 6' #1* 300 cfs 17 6 14 3 60 596.8 DPS14-VTP2-PMP 6' #2* 300 cfs 17 6 14 3 60 596.8 DPS14-VTP3-PMP 6' #3* 300 cfs 17 6 14 3 60 596.8 DPS14-VTP4-PMP 6' #4* 300 cfs 17 6													
14 3 60 596.8 DPS14-VTP1-PMP 6' #1* 300 cfs 17 6 14 3 60 596.8 DPS14-VTP2-PMP 6' #2* 300 cfs 17 6 14 3 60 596.8 DPS14-VTP3-PMP 6' #3* 300 cfs 17 6 14 3 60 596.8 DPS14-VTP4-PMP 6' #4* 300 cfs 17 6										0.50			
14 3 60 596.8 DPS14-VTP2-PMP 6' #2* 300 cfs 17 6 14 3 60 596.8 DPS14-VTP3-PMP 6' #3* 300 cfs 17 6 14 3 60 596.8 DPS14-VTP4-PMP 6' #4* 300 cfs 17 6							1981						
14 3 60 596.8 DPS14-VTP3-PMP 6' #3* 300 cfs 17 6 14 3 60 596.8 DPS14-VTP4-PMP 6' #4* 300 cfs 17 6													
	14	3	60	596.8	DPS14-VTP3-PMP	6' #3*		300	cfs	17			
11 CO 050 1310015 17001 DLD 51 011										17			
15 3 60 373 DPS15-VTP1-PMP 5' #1* 250 cfs 5 15 3 60 373 DPS15-VTP2-PMP 5' #2-D/E* 1975 250 cfs 5							1075						

Asset List - Pump Loads												
Pump Station	Distribution System*	Motor Hz	KW	Equip. Number	Pump	Installati on Date	Pump Capacity (cfs)	Unit of Measure	Rated Pump Head	Pump Diameter (ft)		Secondar y Feeders
15	3	60	373	DPS15-VTP3-PMP	5' #3-D/E*	1975	250	cfs		5		
16	3	60	596.8	DPS16-VTP1-PMP	63" #1*	1966	290	cfs	16	5.25		
16 16	3 3	60	596.8 596.8	DPS16-VTP2-PMP DPS16-VTP3-PMP	63" #2* 63" #3*	1966 1966	290 290	cfs cfs	16 16	5.25 5.25		
16	3	60	596.8	DPS16-VTP4-PMP	63" #4*	1966	290	cfs	16	5.25		
17/Station D	la	60	1865	DPS17-HPA-PMP	3' A*	1975	150	cfs	- 10	3		
17/Station D	1a	60	1865	DPS17-HPD-PMP	3' D*	1975	150	cfs		3		
18	3	60	93.25	DPS18-VTP1-PMP	3' #1*	1983	62	cfs		3		
18 19	2	60	93.25 2238	DPS18-VTP2-PMP DPS19-HP3-PMP	3' #2* 10' #H1*	1983 1975	62 1100	cfs cfs	12.8	3 10		
19	2	60	2238	DPS19-VTP1-PMP	10' #H2*	1975	1100	cfs	12.8	10		
19	2	60	2238	DPS19-VTP2-PMP	10' #H3*	1975	1100	cfs	12.8	10		
19	2	60	596.8	DPS19-HP1-PMP	6' #V1*	1975	310	cfs	15.1	6		
19	2	60	596.8	DPS19-HP2-PMP	6' #V2*	1975	310	cfs	15.1	6		
20 20	3 3	60	447.6 447.6	DPS20-VTP1-PMP DPS20-VTP2-PMP	6' #1* 6' #2*	1989 1989	250 250	cfs cfs	8.5 8.5	6		
Dwyer	3	60	857.9	DPSDWY-VTP1-PMP	68" #1*	1707	356	cfs	0.5	5.67		
Dwyer	3	60	857.9	DPSDWY-VTP2-PMP	68" #2*		356	cfs		5.67		
Dwyer	3	60	857.9	DPSDWY-VTP3-PMP	68" #3*		356	cfs		5.67		
Elaine	3	60	44.76	DPSELN-HP1-PMP	30" #1*		45	cfs		2.5		
Elaine	3	60	44.76	DPSELN-HP2-PMP	30" #2* #5*		45 70	cfs cfs		2.5		
Grant Grant	3	60	298.4 298.4	DPSGRT-VTP5-PMP DPSGRT-VTP6-PMP	#5*		70	cfs		1.167		
Grant	3	60	14.92	DPSGRT-VTP1-PMP	14" #1*		8	cfs		1.167		
Grant	3	60	14.92	DPSGRT-VTP2-PMP	14" #2*		8	cfs		1.167		
Grant	3	60	14.92	DPSGRT-VTP3-PMP	14" #3*		8	cfs		1.167		
Grant	3	60	14.92	DPSGRT-VTP4-PMP	14" #4*		8	cfs		1.167		
I-10	2	60	932.5	DPSI10-VTP1-PMP	60" #1*		250	cfs	31.5	5		
I-10 I-10	2 2	60	932.5 932.5	DPSI10-VTP2-PMP DPSI10-VTP3-PMP	60" #2* 60" #3*		250 250	cfs cfs	31.5	5		
I-10	2	60	447.6	DPSI10-CD1-PMP	40" CD #1*		100	cfs	31.3	5		
Oleander	N/A	60	0	DPSOLR-VTP1-PMP	30" #1*	1979	33	cfs		2.5		
Oleander	N/A	60	0	DPSOLR-VTP2-PMP	30" #2*	1979	33	cfs		2.5		
Oleander	N/A	60	0	DPSOLR-VTP3-PMP	30" #3*	1979	33	cfs		2.5		
Pritchard	2	60	373	DPSPTC-VTP1-PMP	48" #1*		125	cfs	22.65	4		
Pritchard Pritchard	2 2	60	373 18.65	DPSPTC-VTP2-PMP	48" #2* 6" CD #1*		125	cfs cfs	22.65 22.65	0.5		
Monticello	3	60	74.6	1	0 CD#1		3	CIS	22.03	0.3		
Monticello	3	60	74.6	2								
Monticello	3	60	74.6	3								
Oak St.	1	25	1119	A1								
Oak St.	1	25	0	A2								
Oak St. Oak St.	1 1	25 25	1119 0	B1 B2								
Oak St.	1	25	746	C1								
Oak St.	1	25	0	C2								
Oak St.	1	60	932.5	D								
Industrial Ave.	3	60	373	1								
Industrial Ave.	3	60	373	2								
Industrial Ave. Panola	1	60 25	373 1678.5	3								
Panola	1	25	1678.5	2								
Panola	1	60	1678.5	1								
Panola	1	60	1678.5	2								
Claiborne	1	25	1342.8	1								
Claiborne Claiborne	1	25 60	1342.8 1342.8	2								
Claiborne	1	60	1342.8	3								
Low Lift	1	60	261.1	6								
Low Lift	1	60	261.1	7								
High Lift	1	60	1678.5	A								
High Lift	1	60	1678.5	В								
Sewer Station A Sewer Station A	1	25 25	932.5 932.5		3							
Sewer Station A Sewer Station A	l la	60	1715.8		3							
Sewer Station C	N/A	60	0									
Sewer Station C	N/A	25	0									
Underpass 1	3	60	0	PMP-1			0.18	cfs				
Underpass 1	3	60	0	PMP-2			0.18	cfs				
Underpass 10 Underpass 10	3 3	60	0	PMP-1 PMP-2			13	cfs cfs				
Underpass 10 Underpass 10	3	60	0	PMP-2 PMP-3			13	cfs				
Underpass 11	3	60	0	PMP-1			33	cfs				
Underpass 11	3	60	0	PMP-2			33	cfs				
Underpass 11	3	60	0	PMP-3			33	cfs				
Underpass 12	3	60	0	PMP-1			10.5	cfs				
Underpass 12	3	60	0	PMP-2			10.5	cfs				
Underpass 2 Underpass 2	3 3	60	0	PMP-1 PMP-2			10	cfs cfs				
	•	nu	U	rivir-/			10	CIS				

				Asset List -	Pump Loa	ds					
Pump Station	Distribution System*	Motor Hz	KW	Equip. Number	Pump	Installati on Date	Pump Capacity (cfs)	Unit of Measure	Rated Pump Head	Pump Diameter (ft)	 Secondar y Feeders
Underpass 3	3	25	0	PMP-1			14	cfs			
Underpass 3	3	25	0	PMP-2			14	cfs			
Underpass 4	3	25	0	PMP-1			5	cfs			
Underpass 4	3	25	0	PMP-2			5	cfs			
Underpass 5	3	60	0	PMP-1			24	cfs			
Underpass 5	3	60	0	PMP-2			24	cfs			
Underpass 6	3	60	0	PMP-1			6	cfs			
Underpass 6	3	60	0	PMP-2			6	cfs			
Underpass 7	3	60	0	PMP-1			7	cfs			
Underpass 7	3	60	0	PMP-2			7	cfs			
Underpass 8	3	60	0	PMP-1			7	cfs			
Underpass 8	3	60	0	PMP-2			7	cfs			
Underpass 8	3	60	0	PMP-3			7	cfs			
Underpass 9	3	60	0	PMP-1			24	cfs			
Underpass 9	3	60	0	PMP-2			24	cfs			
Underpass 9	3	60	0	PMP-3			24	cfs			
Carrollton Plant	1	25	2000	25 Hz Aux Allowance							
Carrollton Plant	1	60	2000	60 Hz Aux Allowance							

NOTES:

Sources of information: Asset_Registry_GIS.xls

- 1 Currently on SWBNO Power Distribution Network
- 1a Not on SWBNO Power Distribution Network but at a pump station that is currently serviced by SWBNO Network
- 2 Not on SWBNO Power Distribution Network but there is an underground feeder close by, therefore, should be added to the Network
- 3 Not on SWBNO Power Distribution Network and should not be included due to isolated location or capacity of generation

Classification	Hz	kW	Total
1	25	50,121	66,705
	60	16,584	
1+1a	25	50,121	81,625
	60	31,504	
1+1a+2	25	50,121	93,542
	60	43,422	
1+1a+2+3	25	50,121	117,862
	60	67,741	

^{*}System Classification:

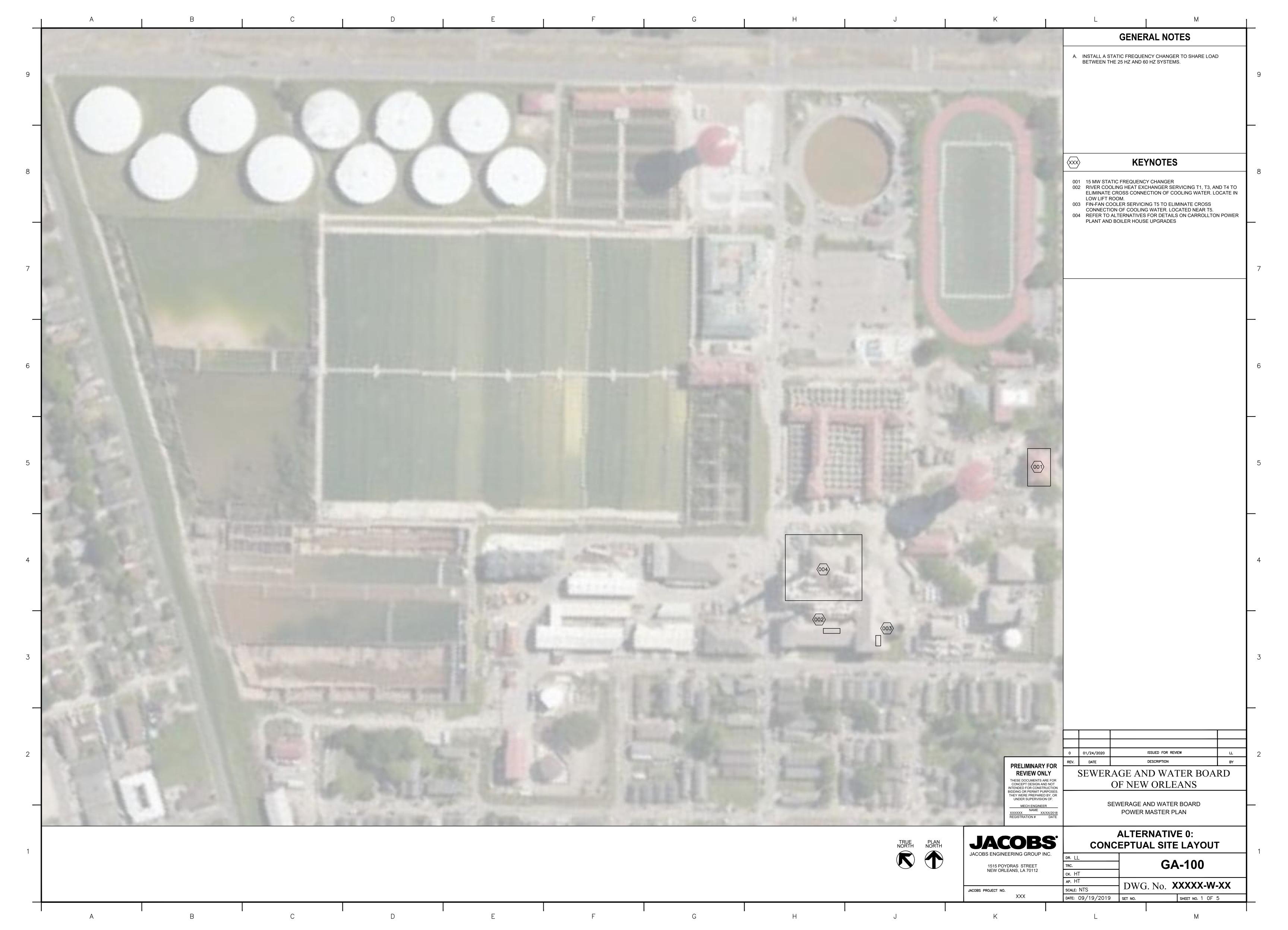
Asset List - Generators

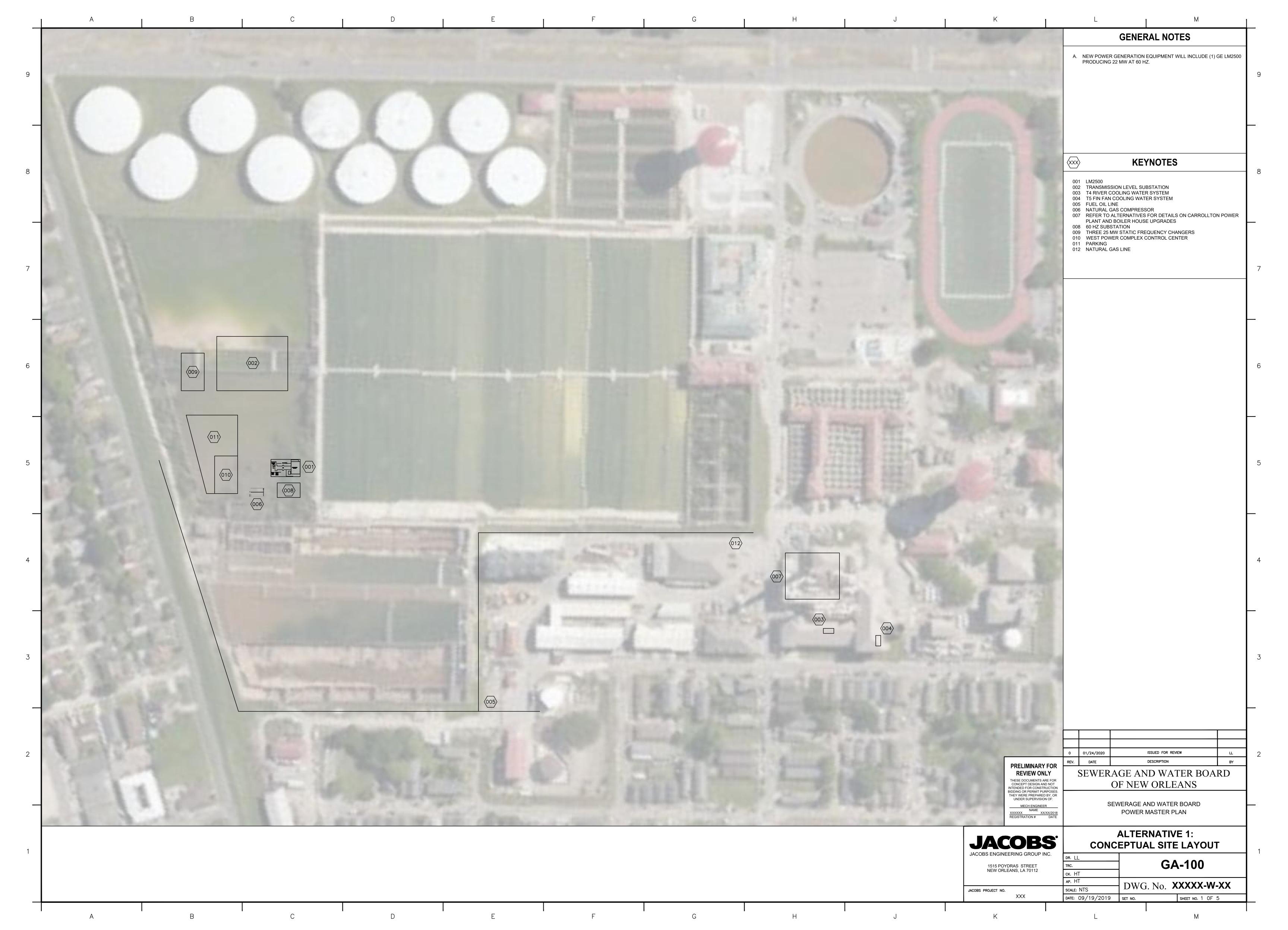
Location	Frequency	Asset Class	Nameplate Capacity	Reliable Capacity	Equip.	Туре	Install	Gen-	Notes
	(Hz)		(MW)	(MW)	Number		Date	Voltage	
Power Plant	25	1	6	6	STG-1	Steam Turbine	1913	6,600	Capacity limited due to condition of equipment,
Power Plant	25	1	15	6	STG-3	Steam Turbine	1928	6,600	turbine is at the end of its useful life.
Power Plant	25	1	20	17	STG-4	Steam Turbine	1917/1954	6,600	Capacity limited due to steam pressure. T4 requires a higher steam pressure than the boiler plant can supply it.
Power Plant	25	1	20	20	CTG-5	Gas Turbine	1963	6,600	
Power Plant	60	1	22	22	CTG-6	Gas Turbine	2010	13,800	Assumption that 1370A will be complete and T6 will be upgraded for full, continuous operation (emissions, anti-icing).
Power Plant	25	1	2.5	2.5	EMD-1	EMD	2018	6,600	ann-icing).
Power Plant	25	1	2.5	2.5	EMD-2	EMD	2018	6,600	
Power Plant Power Plant	25 25	1	2.5 2.5	2.5	EMD-3 EMD-4	EMD EMD	2018 2018	6,600 6,600	
Power Plant	25	1	2.5	2.5	EMD-4 EMD-5	EMD	2018	6,600	
Power Plant	25	1	3.75	3.75	FC-1	Frequency Convertor		6,600	
Carrollton FC	24	1	6	6	FC-1	Frequency Convertor		6,600	60 Hz from Entergy converted to 24 Hz for SWBNO
Carrollton FC Station D	24 24	1 1	2.5	2.5	FC-2 FC-3	Frequency Convertor Frequency Convertor		6,600 6,600	60 Hz from Entergy converted to 24 Hz for SWBNO 60 Hz from Entergy converted to 24 Hz for SWBNO
Station D Station D	24	1	6	6	FC-4	Frequency Convertor		6,600	60 Hz from Entergy converted to 24 Hz for SWBNO
Station C	25	1			FC-1	Frequency Convertor		6,600	
Station C	25	1			FC-2	Frequency Convertor		6,600	
Westbank DPS 3	25 60	3	0.08	0.08	FC-3 60 Hz Gen.	Frequency Convertor Permanent Generator		6,600 4,160	Not utilized for distributed power.
DPS 5	60	3	3.58	3.58	60 Hz Gen.	Permanent Generator Permanent Generator		4,160	Not utilized for distributed power. Not utilized for distributed power.
DPS 6	60	1a	3.75	3.75	60 Hz Gen.	Permanent Generator		4,160	
DPS 6	60	1a	3.75	3.75	60 Hz Gen.	Permanent Generator		4,160	
DPS 7 DPS 11	60 25	1a 3	2.864 0.5	2.864 0.5	60 Hz Gen. 25 Hz Gen.	Permanent Generator Permanent Generator		4,160 4,160	Not utilized for distributed power.
DPS 11	60	3	1.45	1.45	60 Hz Gen.	Permanent Generator		480	Not utilized for distributed power.
DPS 13	60	3	0.23	0.23	60 Hz Gen.	Permanent Generator		480	Not utilized for distributed power.
DPS 13	60	3	0.23	0.23	60 Hz Gen.	Permanent Generator			Not utilized for distributed power.
DPS 13 DPS 13	60	3	3	3	60 Hz Gen.	Permanent Generator Permanent Generator			Not utilized for distributed power. Not utilized for distributed power.
DPS 14	60	3	2.665	2.665	60 Hz Gen.	Permanent Generator			Not utilized for distributed power.
DPS 16	60	3	2.665	2.665	60 Hz Gen.	Permanent Generator			Not utilized for distributed power.
DPS 19	60	2	2	2	60 Hz Gen1	Permanent Generator			
DPS 19 DPS 20	60	3	2 1.5	1.5	60 Hz Gen2	Permanent Generator Permanent Generator			Not utilized for distributed power.
DPS 20	60	3	0.2	0.2	60 Hz Gen2	Permanent Generator			Not utilized for distributed power.
I-10	60	2	2.35	2.35	60 Hz Gen1	Permanent Generator			
I-10	60	2	2.35	2.35	60 Hz Gen2	Permanent Generator			
Pritchard Dwyer	60	3	1.285	1.285	60 Hz Gen	Permanent Generator Permanent Generator			Not utilized for distributed power.
Station D	60	3	2	2	A1	Temporary Generator			Not utilized for distributed power.
Station D	60	3	2	2	A2	Temporary Generator			Not utilized for distributed power.
Station D Station D	60	3	2 2	2 2	A3 A4	Temporary Generator Temporary Generator			Not utilized for distributed power. Not utilized for distributed power.
Station D Station D	60	3	2	2	A4 A5	Temporary Generator			Not utilized for distributed power.
Station D	60	3	2	2	A6	Temporary Generator			Not utilized for distributed power.
Station D	60	3	2	2	B1	Temporary Generator			Not utilized for distributed power.
Station D Station D	60	3	2 2	2 2	B2 B3	Temporary Generator Temporary Generator			Not utilized for distributed power. Not utilized for distributed power.
Station D Station D	60	3	2	2	B4	Temporary Generator			Not utilized for distributed power.
Station D	60	3	2	2	В5	Temporary Generator			Not utilized for distributed power.
Station D	60	3	2	2	B6	Temporary Generator			Not utilized for distributed power.
DPS 4 DPS 10	60	3	2 2	2 2	Gen. 1 Gen. 1	Temporary Generator Temporary Generator			Not utilized for distributed power. Not utilized for distributed power.
DPS 10	60	3	2	2	Gen. 2	Temporary Generator			Not utilized for distributed power.
DWYER	60	3	2	2	Gen. 1	Temporary Generator			Not utilized for distributed power.
DWYER	60	3	2	2	Gen. 2	Temporary Generator			Not utilized for distributed power.
CFC CFC	60	3	2 2	2 2	Gen. 1 Gen. 2	Temporary Generator Temporary Generator			Not utilized for distributed power. Not utilized for distributed power.
CFC	60	3	2	2	Gen. 2	Temporary Generator			Not utilized for distributed power.
CFC	60	3	2	2	Gen. 4	Temporary Generator			Not utilized for distributed power.
CFC	60	3	2	2	Gen. 5	Temporary Generator			Not utilized for distributed power.
CFC Underpass 1	60	3	0.2	0.2	Gen. 6 Gen. 1	Temporary Generator Temporary Generator			Not utilized for distributed power. Not utilized for distributed power.
Underpass 2	60	3	0.2	0.2	Gen. 1	Temporary Generator Temporary Generator			Not utilized for distributed power.
Underpass 3	60	3	0.2	0.2	Gen. 1	Temporary Generator			Not utilized for distributed power.
Underpass 4	60	3	0.2	0.2	Gen. 1	Temporary Generator			Not utilized for distributed power.
Underpass 5 Underpass 6	60	3	0.2	0.2	Gen. 1 Gen. 1	Temporary Generator Temporary Generator			Not utilized for distributed power. Not utilized for distributed power.
Underpass 6 Underpass 7	60	3	0.2	0.2	Gen. 1	Temporary Generator Temporary Generator			Not utilized for distributed power. Not utilized for distributed power.
Underpass 8	60	3	0.2	0.2	Gen. 1	Temporary Generator			Not utilized for distributed power.
Underpass 9	60	3	0.2	0.2	Gen. 1	Temporary Generator			Not utilized for distributed power.
Underpass 10 Underpass 11	60	3	0.2	0.2	Gen. 1 Gen. 1	Temporary Generator Temporary Generator			Not utilized for distributed power. Not utilized for distributed power.
Underpass 11 Underpass 12	60	3	0.2	0.2	Gen. 1	Temporary Generator Temporary Generator			Not utilized for distributed power. Not utilized for distributed power.
DPS 18	60	3	0.5	0.5	Gen. 1	Temporary Generator			Not utilized for distributed power.

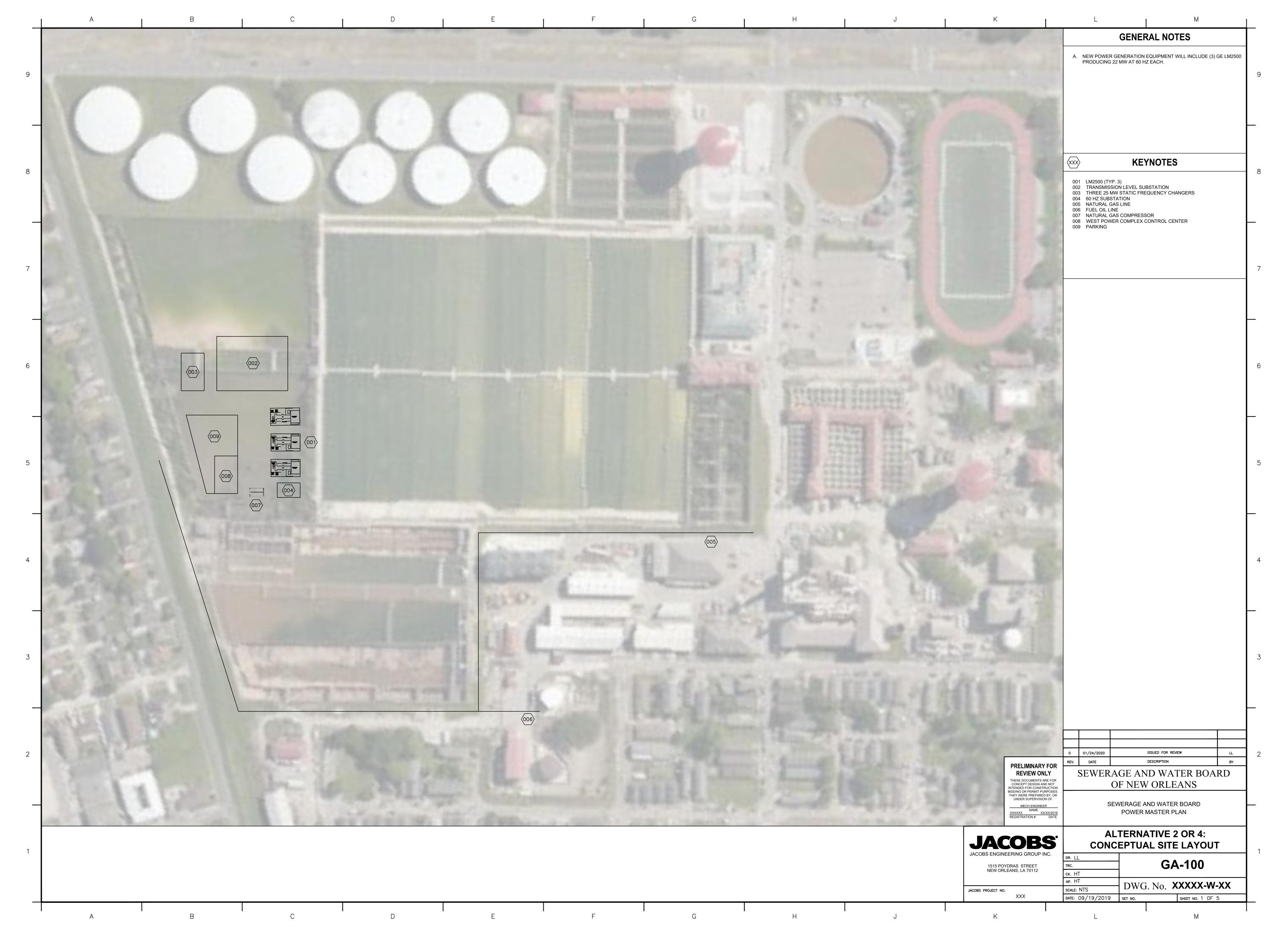
Asset List - Generators

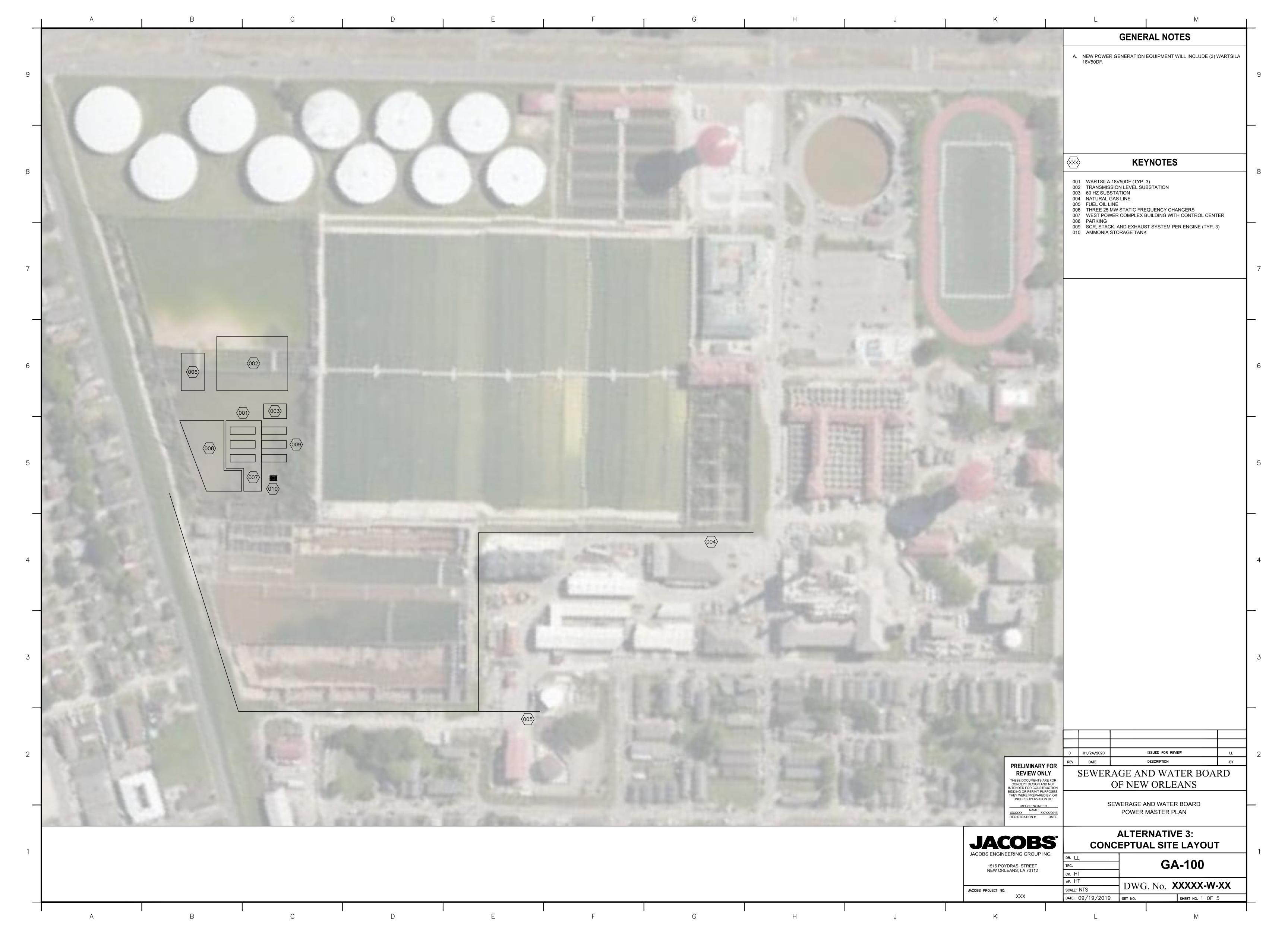
Location	Frequency (Hz) Asset Class	Nameplate Relia Capacity Capa (MW) (M	eity Equip. Number	Туре	Install Date	Gen- Voltage	Notes
----------	----------------------------	---------------------------------------	-----------------------	------	-----------------	-----------------	-------

Classification	Hz	kW	Total
1	25 Hz Gen	61.5	83.5
	60 Hz Gen	22	_
1+1a	25 Hz Gen	61.5	93.9
	60 Hz Gen	32.364	
1+1a+2	25 Hz Gen	61.5	103.8
	60 Hz Gen	42.349	
1+1a+2+3	25 Hz Gen	61.5	125.4
	60 Hz Gen	63.949	


Sources of Information:


Asset Registry 1994 CH2M Power Study Ford, Bacon, Davis Power Study


*Asset Classification:


- 1 Currently on SWBNO Power Distribution Network
- 1a Not on SWBNO Power Distribution Network but at a pump station that is currently serviced by SWBNO Network
- 2 Not on SWBNO Power Distribution Network but there is an underground feeder close by, therefore, should be added to the Network
- 3 Not on SWBNO Power Distribution Network and should not be included due to isolated location or capacity of generation

Appendix B Site Layouts

Appendix C Summary of Alternatives

March 2020

Alternative	Description	Distribution System from Carrollton Plant	Pump Stations	Utility Connection	Steam Generation Capacity	Elimination of Cross Connection	New Gas Compressor	Upgrades Required to Existing Generation Assets
Alternative 0	Extend Remaining Useful Service Life of	25 Hz, Operated at 6.6 kV Replace 24 existing feeders	-25 Hz Pumps remain powered by 25Hz Generators at Carrollton Power Plant and/or Frequency Changers (from utility power) -60 Hz Pumps reamain powered locally by unreliable Entergy sources, backed up by local Emergency Diesel Generators	Utilize existing Entergy connections, which are a combination of residential and commercial quality	upgrade boiler plant and maintain reliability for the duration of the Life Cycle Cost (LCC) evaluation.	T1 - River Cooling (pretreatment stream) T3 - River Cooling (pretreatment stream) T4 - River Cooling (pretreatment stream) T5 - Install Fin-Fan Cooler or send cooling water to drain	Not Required	-Replace existing PFC with a 15 MW Static Frequency Changer -Major equipment upgrades required at STG1, STG3 and CTG5 to improve system reliability for the duration of the LCC evaluationT6 upgrades required to mitigate emissions -All pump motors, switchgear and electrical equipment susceptible to water damage must be raised.
Alternative 1	Substation, Reduce Steam Use and Convert to 60Hz	Converted to 60 Hz, 13.8 kV. Replace 24 existing feeders	Replace 25 Hz pump motors with new 60 Hz vertical sychronous motors mounted above the maximum considered flood elevation in the pump stations. New gearboxes installed.	Changers to share power power across 25 and 60 Hz, as needed. All generation assets become backup only for when Entergy is not available	-Decommission all existing steam piping, including main header -New Deaerator and Water Treatment	T1 - retire, no action needed T3 - retire, no action needed T4 - River Cooling (pretreatment stream) T5 - Install Fin-Fan Cooler or send cooling water to drain, or river cooling	Yes - 600 PSI gas required	Major equipment upgrades required at CTG5 to improve system reliability.
Alternative 2	Install 50 MW Substation, Eliminate Steam Use, Add CTGs and Convert to 60Hz	same as Alternative 1	Same as Alternative 1	same as Alternative 1	Retire all steam generation & use	T1 - retire, no action needed T3 - retire, no action needed T4 - retire, no further action needed T5 - retire, no action needed	Yes - 600 PSI gas required	Minimal
Alternative 3	Install 50 MW Substation, Eliminate Steam Use, Add Engine Generators and Covert to 60 Hz		Same as Alternative 1	Same as Alternative 1	Retire all steam generation & use	Same as Alternative 2	Not Required	Minimal
Alternative 4	Install 120 MW Substation, Eliminate Steam Use, Add CTGs and Convert to 60 Hz	same as Alternative 1	Same as Alternative 1	New industrial / utility grade substation, two 60 MVA transformers Install three 25 MW Static Frequency Changers to share power power across 25 and 60 Hz, as needed. All generation assets become backup only for when Entergy is not available or demand exceeds substation capacity.	Retire all steam generation & use	Same as Alternative 2	Yes - 600 PSI gas required	Minimal

March 2020

Alternative	25 Hz Generation Assets	60 Hz Generation Assets	Future Generation Assets	Total Reliable Capacity of SWB assets	Firm (n-1) Reliable Generation Capacity at Carrollton Pwr Plant and Connected DPS	Future Firm (n-1) Reliable Capacity at Carollton Plant and Connected DPS
Alternative 0	T1 (STG) - 6.0 MW (6.0 MW reliable) T3 (STG) - 15 MW (6.0 MW reliable)* T4 (STG) - 20 MW (17.0 MW reliable)* T5 (CTG) - 20 MW (20.0 MW reliable) EMDs - 12.5 MW (12.5 MW reliable) TOTAL - 73.5 total/61.5 reliable	Carrollton Power Plant: T6 (CTG) - 22 MW Remote Drainage Pump Stations - 60 Hz Backup Generators Not Connected	Connection of additional 60 Hz drainage pump stations would require new frequency changers and is not recommended.	Carrollton Power Plant 83.5 MW* *Frequency changers used to convey power between 25Hz and 60Hz sytems as needed	Carrollton Power Plant 61.5 MW 60 Hz Pumps at Drainage Pump Stations Varies by Station	N/A Connection of additional 60 Hz drainage pump stations to 25 Hz power distribution system would require new frequency changers and is not recommended.
Alternative 1	T1 (STG) - retire T3 (STG) - retire T4 (STG) - 20 MW (20.0 MW reliable) T5 (CTG) - 20 MW (20.0 MW reliable)* EMDs - 12.5 MW (12.5 MW reliable) TOTAL - 52.5 total/52.5 MW reliable *T4 reliable capacity further reduced due to reduction in steam generation capacity	T6 (CTG) - 22 MW DPS diesel generators - 10.4 MW (1) New Gas Turbine Dual Fuel LM2500 - 22 MW TOTAL - 54.4 MW	DPS diesel generators - 10.0 MW* TOTAL - 10.0 MW *existing generators currently not on SWBNO distribution (ex. DPS 19)	106.9 MW	84.9 MW	94.9 MW
Alternative 2	T1 (STG) - retire T3 (STG) - retire T4 (STG) - retire T5 (CTG) - retire EMDs - 12.5 MW (12.5 MW reliable) TOTAL - 12.5 MW	T6 (CTG) - 22 MW DPS diesel generators - 10.4 MW (3) New Gas Turbines, Dual Fuel LM2500 (22MW each) TOTAL - 98.4 MW	Same as Alternative 1	110.9 MW	88.9 MW	98.9 MW
Alternative 3	Same as Alternative 2	T6 (CTG) - 22 MW DPS diesel generators - 10.4 MW (3) Wartsila 18V50DF - 18 MW TOTAL - 86.4 MW	Same as Alternative 1	98.9 MW	76.9 MW	86.9 MW
Alternative 4	Same as Alternative 2	Same as Alternative 2	Same as Alternative 1	110.9 MW	88.9 MW	98.9 MW

Appendix D Life Cycle Costs

HIGH VOLTAGE RATE SCHEDULE - SUMMARY OF LIFE CYCLE COST COMPARISONS SWBNO Power Master Plan Natural Gas Adder: 0.0%

		Natural Gas Escalation:	%0.0	Natural Gas Adder:	0.0%					
	Sensitivity Adjustments>	Purchased Electricty Escalation:	%0.0	Purchased Electricity Adder:	0.0%					
		Estimated Installed	Annual Purchas	ourchased Utility Costs	Incremental				Payback Period WPC Payback	WPC Payback
	Option	Costs	Fuel	Electricity	Annual O&M Costs	Annual O&M Costs 30-Year Life Cycle Cost 30-Year LCC Savings Emissions (tons/yr)	30-Year LCC Savings	Emissions (tons/yr)	(yrs)	Period (yrs)
Alternate 0		\$508,271,100	\$10,427,424	\$2,935,752	\$4,813,909	\$1,071,114,925	W/A	120,232	•	i
Alternate 1		\$509,409,000	\$330,396	\$6,236,753	\$2,674,588	\$785,732,477	\$285,382,448	79,832	0.12	26.81
Alternate 2		\$549,721,000	\$246,884	\$6,236,753	\$1,866,300	\$803,221,334	\$267,893,591	78,116	4.64	28.56
Alternate 3		\$547,075,000	\$206,961	\$6,236,753	\$1,943,157	\$801,265,547	\$269,849,378	77,788	4.31	28.35
Alternate 4		\$553,089,000	\$1,351	\$8,472,857	\$1,800,000	\$859,746,716	\$211,368,209	77,820	98:9	36.19

LARGE INTERRUPTIBLE RATE SCHEDULE - SUMMARY OF LIFE CYCLE COST COMPARISONS

		ž	%0.0	Natural Gas Adder:	%0.0					
	Sensitivity Adjustments>	Purchased Electricty Escalation:	%0.0	Purchased Electricity Adder:	%0.0					
		Estimated Installed	Annual Purcha	urchased Utility Costs	Incremental				Payback Period WPC Payback	WPC Payback
	Option	Costs	Fuel	Electricity	Annual O&M Costs	30-Year Life Cycle Cost 30-Year LCC Savings Emissions (tons/yr)	30-Year LCC Savings	Emissions (tons/yr)	(yrs)	Period (yrs)
Alternate 0		\$508,271,100	\$10,427,424	\$2,935,752	\$4,813,909	\$1,071,114,925	N/A	120,232	-	
Alternate 1		\$509,409,000	\$330,396	\$3,362,831	\$2,674,588	\$705,152,351	\$365,962,574	79,832	60'0	20.90
Alternate 2		\$549,721,000	\$246,884	\$3,362,831	\$1,866,300	\$722,641,208	\$348,473,717	78,116	3.57	21.95
Alternate 3		\$547,075,000	\$206,961	\$3,362,831	\$1,943,157	\$720,685,421	\$350,429,504	77,788	3.32	21.83
Alternate 4		\$553,089,000	\$1,351	\$4,568,945	\$1,800,000	\$750,287,329	\$320,827,595	77,820	4.19	23.84

Electric costs are the same in Alt 1-3 since the total KWH and rate schedule used are consistent.
 Alternate 0 Fuel and Electric Costs were taken from the 2018 Utility spreadsheets provided by SWBNO.
 A value of 1, L25 IsSMW nof emissions was used to calculated the Purchased Power Emissions; US Energy Information Administration for the New Orleans region.
 Fuel usage and emissions were calculated using 300 hours based on actual usage included in the 2018 Utility spreadsheets provided by SWBNO.
 Per the EPA it is estimated that are 0.0551 tons of emissions per Mcf of natural gas, this value was used to calculate the emissions in alternate 0.

Appendix E Operation and Maintenance Costs

Alternate 0: O&M Cost Estimate Sewerage and Water Board of New Orleans

Item	Quantity	Interval (Years)	First Year	Cost / Each	Cost/Interval
Annually Recurring					
Gas/Steam Turbine LTSA (per kW-h)	109,374,768	-	_	\$0.0055	\$601,561
Water Consumption (gal)	6,364,800	_	_	\$0.008	\$50,918
Ammonia Consumption (gal)	2,858	_	_	\$0.50	\$1,429
Misc. BOP O&M	_	_	_	\$1,250,000	\$1,250,000
Annual Labor					
Plant Manager	_	-	_	\$200,000	\$200,000
Plant Engineer	4	_	_	\$150,000	\$600,000
Turbine Specialist	_	_	_	\$100,000	\$100,000
Operation Supervisors	က	_	_	\$100,000	\$300,000
Steam Plant Operator	2	_	_	\$80,000	\$400,000
Power Plant Operator	က	_	_	\$80,000	\$240,000
Mechanic	4	_	_	\$80,000	\$320,000
Electrician	4	_	_	\$80,000	\$320,000
I&C/Controls	2	_	_	\$80,000	\$160,000
Administrative	2	_	_	\$60,000	\$120,000
Non-Annually Recurring					
Boiler 1 Re-Tube	_	25	25	\$750,000	\$750,000
Boiler 2 Re-Tube	_	25	15	\$750,000	\$750,000
Boiler 3 Re-Tube	_	25	25	\$750,000	\$750,000
Boiler 4 Re-Tube	_	25	27	\$750,000	\$750,000
Boiler 5 Re-Tube	_	25	27	\$750,000	\$750,000
Boiler 6 Re-Tube	_	25	28	\$750,000	\$750,000

Notes:

LTSA based on actual hours used in 2018 based on Utility bills provided by SWBNO.

Assumed emissions control by SCR (selective catalytic reduction) ammonia consumption: 0.12 gal/MMBTU fuel consumed at average load, based on industry standar Water consumption was based on using max steam plant output for 900 hrs/yr and min output for remaining of year.

Water consumption was calculated as 4% makeup water only, based on industry standard.

BOP O&M includes preventative maintenance budget items for various valves, pipes, building, electrical, etc.

Applied a complexitity factor increase of 25% to the LTSA and the BOP O&M, due to the limited amount of parts and labor for 25 Hz equipment in comparision to modern equipment.

Total Annual O&M

\$4,813,909

ltem	Quantity	Interval (Years)	First Year	Cost / Each	Cost/Interval
Annually Recurring					
Gas/Steam Turbine LTSA (per kW-h)	7,800,000	-	_	\$0.0096	\$74,588
Water Consumption (gal)	0	_	_	\$0.0080	\$0
Ammonia Consumption (gal)	0	_	_	\$0.50	\$0
Misc. BOP O&M	_	_	_	\$450,000	\$450,000
Annual Labor					
Plant Manager	_	-	_	\$200,000	\$200,000
Plant Engineer	4	_	_	\$150,000	\$600,000
Turbine Specialist	_	_	_	\$100,000	\$100,000
Operation Supervisors	2	_	_	\$100,000	\$200,000
Steam Plant Operator	2	_	_	\$80,000	\$160,000
Power Plant Operator	3	_	_	\$80,000	\$240,000
Mechanic	2	_	_	\$80,000	\$160,000
Electrician	2	_	_	\$80,000	\$160,000
I&C/Controls	2	_	_	\$80,000	\$160,000
Administrative	2	_	_	\$60,000	\$120,000
Non-Annually Recurring					
Boiler 2 Re-Tube	_	25	15	\$750,000	\$750,000
Aux Boiler Re-Tube	_	25	25	\$750,000	\$750,000

Notes:

LTSA values based on 26 MW and 300 hrs run time.

Assumed emissions control by SCR (selective catalytic reduction) ammonia consumption: 0.12 gal/MMBTU fuel consumed at average load

Water consumption is zero due to operating the gas turbines prior to operating T4.

BOP O&M includes preventative maintenance budget items for various valves, pipes, building, electrical, etc. Ammonia consuption is zero due to operating the gas turbines prior to operating the boilers for T4.

Applied a complexitity factor increase of 12.5% to the LTSA and the BOP O&M, due to the limited amount of parts and

abor for 25 Hz equipment in comparision to modern equipment.

Total Annual O&M \$2,674,588

Alternate 2: O&M Cost Estimate Sewerage and Water Board of New Orleans

Item	Quantity	Interval (Years)	First Year	Cost / Each	Cost/Interval
Annually Recurring					
Gas Turbine LTSA (per kW-h)	7,800,000	~	_	\$0.0085	\$66,300
Misc. BOP O&M	_	-	_	\$200,000	\$200,000
Annual Labor					
Plant Manager	_	~	_	\$200,000	\$200,000
Plant Engineer	4	-	_	\$150,000	\$600,000
Turbine Specialist	_	-	_	\$100,000	\$100,000
Operation Supervisors	_	-	_	\$100,000	\$100,000
Steam Plant Operator	0	-	_	\$80,000	\$0
Power Plant Operator	က	-	_	\$80,000	\$240,000
Mechanic	_	-	_	\$80,000	\$80,000
Electrician	_	-	_	\$80,000	\$80,000
I&C/Controls	_	-	_	\$80,000	\$80,000
Administrative	2	_	_	\$60,000	\$120,000
Non-Annually Recurring					

Notes: LTSA values based on 26 MW and 300 hrs run time.

\$1,866,300 Total Annual O&M

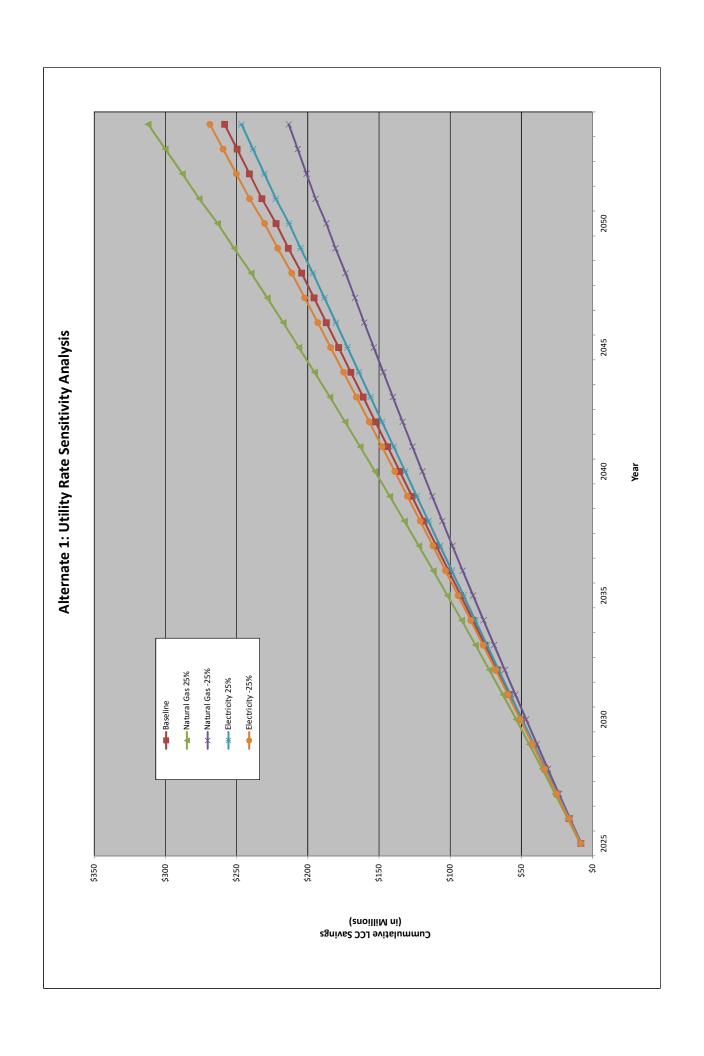
Alternate 3: O&M Cost Estimate Sewerage and Water Board of New Orleans

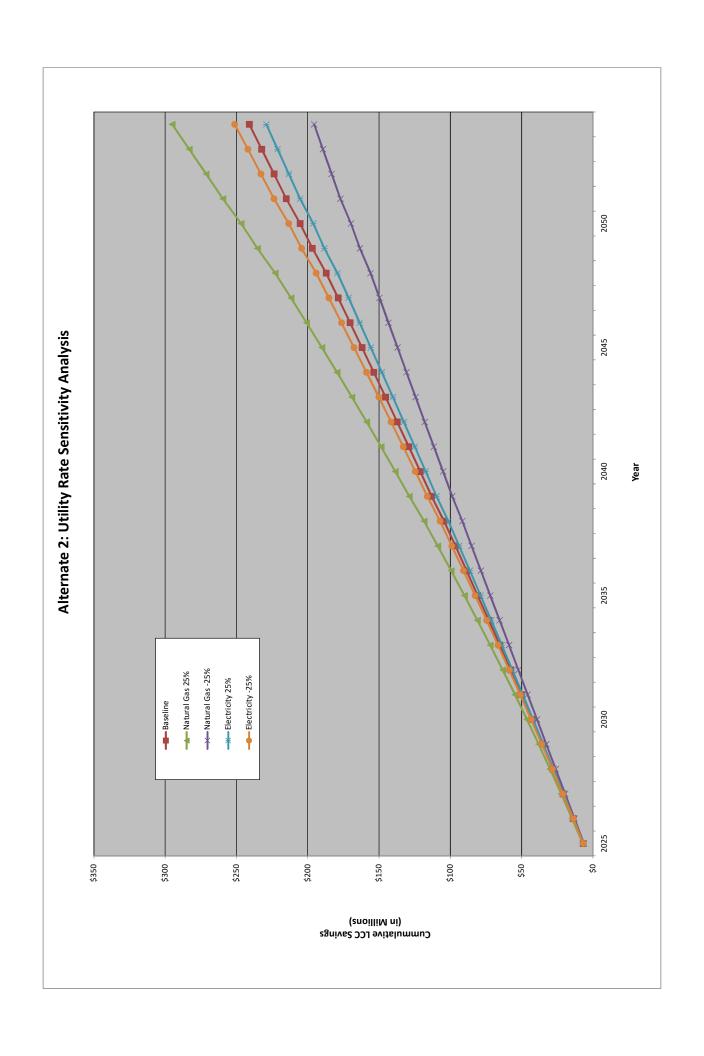
Item	Quantity	Interval (Years)	First Year	Cost / Each	Cost/Interval
Annually Recurring					
Reciprocating Engine LTSA (per kW-h)	7,800,000	_	_	\$0.0214	\$202,524
Ammonia Consumption (gal)*	81,266	_	_	\$0.50	\$40,633
Misc. BOP O&M	_	_	_	\$200,000	\$200,000
Annual Labor					
Plant Manager	_	_	_	\$200,000	\$200,000
Plant Engineer	4	_	_	\$150,000	\$600,000
Turbine Specialist	0	_	_	\$100,000	\$0
Operation Supervisors	_	_	_	\$100,000	\$100,000
Steam Plant Operator	0	_	_	\$80,000	\$0
Power Plant Operator	က	_	_	\$80,000	\$240,000
Mechanic	_	_	_	\$80,000	\$80,000
Electrician	_	_	_	\$80,000	\$80,000
I&C/Controls	_	_	_	\$80,000	\$80,000
Administrative	2	_	_	\$60,000	\$120,000
Non-Annually Recurring					

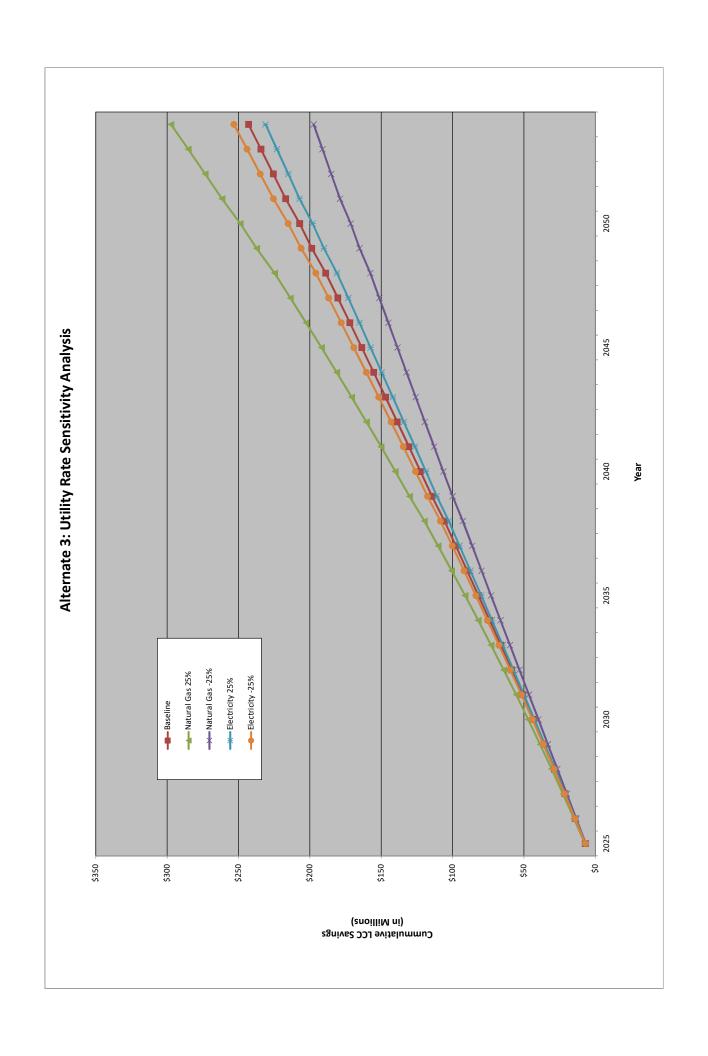
Notes: Assumed SCR ammonia consumption: 0.12 gal/MMBTU fuel consumed at average load, based on industry standard. LTSA values based on information from Wartsila provided 10/22/2019

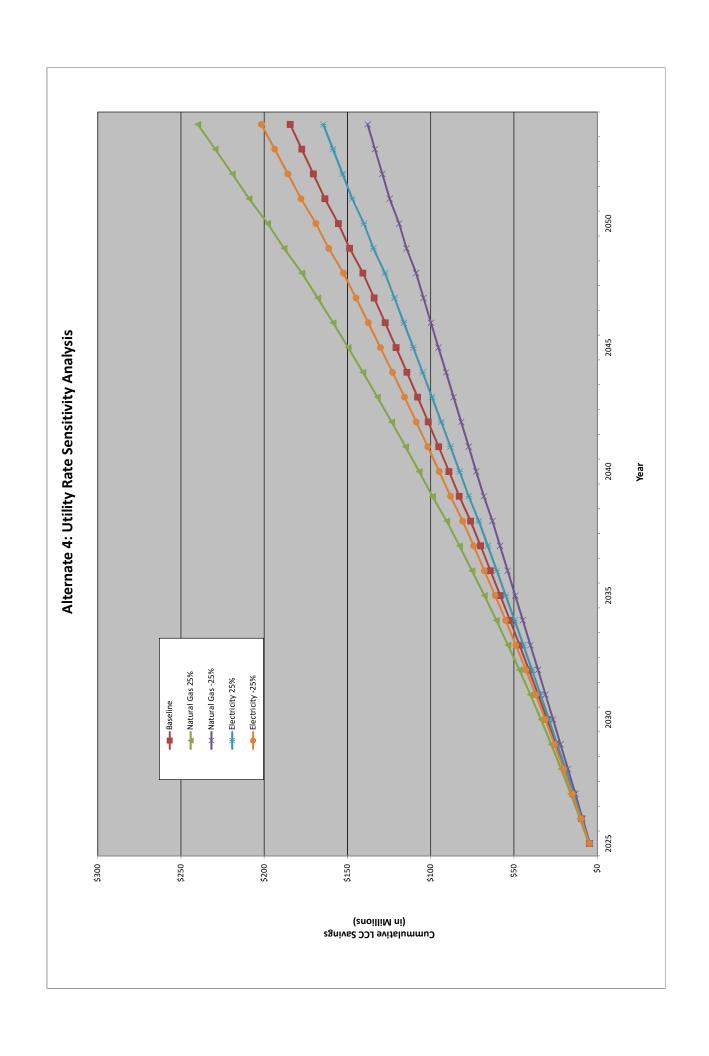
\$1,943,157 Total Annual O&M

Alternate 4: O&M Cost Estimate Sewerage and Water Board of New Orleans


Item	Quantity	Interval (Years)	First Year	Cost / Each	Cost/Interval
Annually Recurring					
Gas Turbine LTSA (per kW-h)	0	_	_	\$0.0085	\$0
Misc. BOP O&M	_	_	_	\$200,000	\$200,000
Annual Labor					
Plant Manager	_	_	_	\$200,000	\$200,000
Plant Engineer	4	_	_	\$150,000	\$600,000
Turbine Specialist	_	_	_	\$100,000	\$100,000
Operation Supervisors	_	_	_	\$100,000	\$100,000
Steam Plant Operator	0	_	_	\$80,000	\$0
Power Plant Operator	က	_	_	\$80,000	\$240,000
Mechanic	_	_	_	\$80,000	\$80,000
Electrician	_	_	_	\$80,000	\$80,000
I&C/Controls	_	_	_	\$80,000	\$80,000
Administrative	2	_	_	\$60,000	\$120,000
Non-Annually Recurring					


Notes: LTSA values are based on run time. In this alternative, it is assumed that all normal demand will be provided by Entergy and the new generators will not run.


Total Annual O&M


\$1,800,000

Appendix F Sensitivity Analysis

Appendix G Preliminary Cost Estimate

		Phase 1	Phase 2A	, 2A		Phase 2B		Phase 2C		Phase 2D		Total
Alternative 0	s	111,268,290 \$		136,594,778	s	80,943,023	s	105,435,904	s	74,028,838	s	508,271,000
Alternative 1	s	188,914,079	\$ 124,2	124,205,383	s	44,576,025	s	90,813,927	s	86,850,037	ઝ	535,360,000
Alternative 2	s	231,488,224	\$ 123,3	123,394,439	s	44,284,986	s	90,220,997	s	86,282,988	8	575,672,000
Alternative 3	S	230,424,219	\$ 122,8	122,827,273	s	44,081,436	s	89,806,309	s	85,886,400	8	573,026,000
Alternative 4	s	232,842,559 \$		124,116,365	\$	44,544,077	\$	90,748,840	\$	86,787,792	\$	579,040,000

ALTERNATE 0 - BASELINE

DESCRIPTION	QTY	UM	CONUMENT CON CONTRACT	ISTRU	CTION TOTAL	Construction	Design	Escalation
DESCRIPTION	QII	OW	Oldi i aa		TOTAL	Contingency	Contingency	Year
	Dhasa	4 \\/-	ul.					
	Phase							
Full 1370 Boiler Upgrades	1	LS \$			44,806,000	20% 20%	20% 30%	
Elimination of Cross Connect to T1, T3, T4 and T5 Development and installation of integrated communications & control system, Old Equip	1 1	LS \$			4,168,000 15,000,000	20%	30% 30%	2021
Development and installation of integrated communications & control system, Old Equip	- '	LS \$		О \$ \$	15,000,000	2076	30 70	
SubTotal (2019 Dollars)				\$	63,974,000	\$ 12,795,000	\$ 14,712,000	
Escalated Total				\$	67,212,684	\$ 13,442,747	\$ 15,456,795	
	- Di							
	Phas							
Reconditioning of T1	1	EA \$			24,550,000	20%	30%	
Alt 0 - Phase 2A Waterproofing motors & switchgear inside DPS buildings	1 1	EA \$			24,480,000	20%	30% 30%	2023
Phase 2A Feeder Replacements SubTotal (2019 Dollars)	ı	EA \$	25,721,25	\$	25,721,250 74,751,250	20% \$ 14,950,000	\$ 22,425,000	
Escalated Total				\$		\$ 16,502,000	\$ 24,753,004	
Escalated Total				Ψ	02,311,393	φ 10,302,003	φ 24,733,004	
	Phas	e 2B						
Reconditioning of T3	1	LS \$	24,550,00	0 \$	24,550,000	15%	15%	
Alt 0 - Phase 2B Waterproofing motors & switchgear inside DPS buildings	1	EA \$			8,520,000	20%	30%	2025
Phase 2B Feeder Replacements	1	LS \$	9,091,50		9,091,500	20%	30%	
SubTotal (2019 Dollars)				\$, ,	\$ 7,205,000	\$ 8,966,000	
Escalated Total				\$	48,894,414	\$ 8,355,591	\$ 10,397,811	
	- Di	- 00						
	Phas	_						
Reconditioning of T5	1	LS \$			17,839,000	15%	15%	
Alt 0 - Phase 2C Waterproofing motors & switchgear inside DPS buildings	1	EA \$			17,790,000	20%	30%	2027
Phase 2C Feeder Replacements SubTotal (2019 Dollars)	1	LS \$	16,644,00		16,644,000	20%	30%	
Escalated Total				\$	52,273,000 63,689,575	\$ 9,563,000 \$ 11,651,587	\$ 13,006,000 \$ 15,846,548	
Escalated Total				ų.	00,000,070	Ψ 11,001,007	Ψ 10,040,040	
	Phas	e 2D						
Phase 2D Feeder Replacements	1	LS \$	22,543,50	0 \$	22,543,500	20%	30%	
Alt 0 - Phase 2D Waterproofing motors & switchgear inside DPS buildings	1	EA \$	12,390,00	0 \$	12,390,000	20%	30%	2029
		LS		\$				
SubTotal (2019 Dollars)				\$	34,933,500	\$ 6,987,000		
Escalated Total				\$	44,717,833	\$ 8,943,951	\$ 13,415,286	
Combined Material and Labor Subtotal (including escalation)				\$	307,026,000			
		ontr	actor Co	ete				
Miscallan	DOLLO		40LUI 00	313				
Miscellan General Conditions and Project Staff (9%)			27 632 34	2 O	27 632 340			
General Conditions and Project Staff (9%)	leous C	LS \$			27,632,340 15.351.300			
General Conditions and Project Staff (9%)	1		15,351,30	0 \$	27,632,340 15,351,300 4,144,851			
General Conditions and Project Staff (9%) Overhead (5%)	1 1	LS \$	15,351,30 4,144,85	0 \$ 1 \$	15,351,300			
General Conditions and Project Staff (9%) Overhead (5%) Bond and Insurance (1.35%)	1 1 1	LS \$ LS \$ LS \$ LS \$	15,351,30 4,144,85 15,351,30	0 \$ 1 \$ 0 \$	15,351,300 4,144,851			
General Conditions and Project Staff (9%) Overhead (5%) Bond and Insurance (1.35%) General Contractor Fees (5%) Material Sales Tax	1 1 1 1	LS \$ LS \$ LS \$	15,351,30 4,144,85 15,351,30	0 \$ 1 \$ 0 \$ \$	15,351,300 4,144,851 15,351,300 - -			
General Conditions and Project Staff (9%) Overhead (5%) Bond and Insurance (1.35%) General Contractor Fees (5%)	1 1 1 1	LS \$ LS \$ LS \$ LS \$	15,351,30 4,144,85 15,351,30	0 \$ 1 \$ 0 \$	15,351,300 4,144,851			
General Conditions and Project Staff (9%) Overhead (5%) Bond and Insurance (1.35%) General Contractor Fees (5%) Material Sales Tax	1 1 1 1	LS \$ LS \$ LS \$ LS \$	15,351,30 4,144,85 15,351,30	0 \$ 1 \$ 0 \$ \$	15,351,300 4,144,851 15,351,300 - -			

Total Construction Cost

Items Specifically Excluded from Estimate
Private Communication Network (assumes use of third party fiber)

508,271,000

ALTERNATE 1 - INSTALL 50 MW SUBSTATION, REDUCE STEAM USE AND CONVERT TO 60 HZ POWEF

DESCRIPTION	QTY	UM	CONS UNIT \$\$	TRUCTION TOTAL	Construction Contingency	Design Contingency	Escalatio Year
			- ',	-	commigancy	- Containing one y	
	Pha	ase 1					
Partial Boiler Upgrades (Keep Boiler 2, Add Aux Boiler, DA and Wtr Trtmt)	1	LS \$	10,800,000		20%	30%	
Demolition of T1, T3 and Auxiliaries	1	LS \$	700,000		20%	30%	
Partial Boiler House Equipment Demolition Elimination of Cross Connect to T4 and T5 only	1	LS \$ LS \$	1,600,000 4,168,000	\$ 1,600,000 \$ 4,168,000	20% 20%	30% 30%	
New 50 MVA Substation	1	LS \$		\$ 4,100,000	20%	20%	
Vest Site Redevelopment and Retention Pond Removal	1	LS \$	5,000,000	\$ 5,000,000	20%	30%	
.M2500 - Complete Outdoor Package with Gas Compressor - Installed	1	LS \$		\$ 16,240,000	20%	20%	
Gas Compressor for LM2500	1	LS \$	750,000	\$ 750,000	20%	20%	
Furbine Install (Struct, Mech, Elec, I&C)	1	LS \$		\$ 5,000,000	20%	20%	
Plant Building to House Engine Generators and Control Room	1	LS \$	7,200,000	\$ 7,200,000	20%	30%	2021
Fuel Gas and Fuel Oil Lines to West Power Complex	1	LS \$	731,700		20%	30%	
New 60 Hz Ring Bus at WPC or PFC Building	1	LS \$	2,500,000	\$ 2,500,000	20%	30%	
New Aux Ring Bus at DPS 3	-	LS \$	1,200,000	\$ -	20%	30%	
New 25 MW Static Frequency Changer	3	LS \$	7,250,000	\$ 21,750,000	20%	30%	
Power Plant Control System	1	LS \$	4,000,000	\$ 4,000,000	20%	30%	
lew Carrolton Feeders From West Power Complex to Loads	1	LS \$	1,860,000	\$ 1,860,000	20%	30%	
Development and installation of integrated communications & control system, New Equip	1	LS \$	10,000,000	\$ 10,000,000	20%	30%	
	-	LS \$	-	\$ -			
SubTotal (2019 Dollars)				\$ 106,299,700		\$ 28,291,000	
scalated Total				\$ 111,681,122	\$ 22,336,288	\$ 29,723,232	
	Pha	se 2A					
Phase 2A DPS 60 Hz Conversions (New Xfmrs, Swgr, 60 Hz Motor, Gearboxes, etc)	1	EA \$	40,800,000	\$ 40,800,000	20%	30%	
Phase 2A Feeder Replacements	1	LS \$	25,721,250	\$ 25,721,250	20%	30%	2022
	-	LS \$	-	\$ -			2023
	-	EA \$	-	\$ -			
ubTotal (2019 Dollars)				\$ 66,521,250		\$ 19,956,000	
scalated Total				\$ 73,427,013	\$ 14,685,127	\$ 22,027,690	
	Pha	se 2B					
hase 2B DPS 60 Hz Conversions (New Xfmrs, Swgr, 60 Hz Motor, Gearboxes, etc)	1	EA \$	14,200,000	\$ 14,200,000	20%	30%	
Phase 2B Feeder Replacements	1	LS \$	9,091,500	\$ 9,091,500	20%	30%	2024
		LS \$	-	\$ -			
SubTotal (2019 Dollars)				\$ 23,291,500			
scalated Total				\$ 26,352,194	\$ 5,270,099	\$ 7,905,149	
	Pha	se 2C					
Phase 2C DPS 60 Hz Conversions (New Xfmrs, Swgr, 60 Hz Motor, Gearboxes, etc)	1	LS \$	29,650,000	\$ 29,650,000	20%	30%	
Phase 2C Feeder Replacements	1	LS \$	16,644,000	\$ 16,644,000	20%	30%	2025
		LS \$	-	\$ -			
SubTotal (2019 Dollars)				\$ 46,294,000			
scalated Total				\$ 53,686,847	\$ 10,737,601	\$ 16,105,822	
	Pha	se 2D					
hase 2D DPS 60 Hz Conversions (New Xfmrs, Swgr, 60 Hz Motor, Gearboxes, etc)	1	LS \$	20,650,000	\$ 20,650,000	20%	30%	
hans 2D Fooder Poplessments	1	10 6	00 540 500	\$ 22,543,500	20%	30%	2026
Phase 2D Feeder Replacements		LS \$	22,543,500	φ 22,343,300			
· · · · · · · · · · · · · · · · · · ·	Į.	LS \$	22,543,500	\$ -			
subTotal (2019 Dollars)	'		22,543,500	\$ - \$ 43,193,500	£ 40,000,050	£ 45.400.000	
SubTotal (2019 Dollars) Scalated Total	'		22,543,500	\$ - \$ 43,193,500 \$ 51,343,498	£ 40,000,050	£ 45.400.000	
ubTotal (2019 Dollars) scalated Total	'		22,543,500	\$ - \$ 43,193,500	£ 40,000,050	£ 45.400.000	
subTotal (2019 Dollars) scalated Total		LS \$	-	\$ 43,193,500 \$ 51,343,498 \$ 316,491,000	£ 40,000,050	£ 45.400.000	
SubTotal (2019 Dollars) Secalated Total Combined Material and Labor Subtotal (including escalation) Miscelland General Conditions and Project Staff (9%)		LS \$ Contra	ctor Cost	\$ 43,193,500 \$ 51,343,498 \$ 316,491,000 S \$ 28,484,190	£ 40,000,050	£ 45.400.000	
SubTotal (2019 Dollars) Secalated Total Combined Material and Labor Subtotal (including escalation) Miscelland Seneral Conditions and Project Staff (9%) Overhead (5%)	eous (LS \$ Contra LS \$ LS \$ LS \$	ctor Cost 28,484,190 15,824,550	\$ 43,193,500 \$ 51,343,498 \$ 316,491,000 S \$ 28,484,190 \$ 15,824,550	£ 40,000,050	£ 45.400.000	
SubTotal (2019 Dollars) Secalated Total Combined Material and Labor Subtotal (including escalation) Miscellane General Conditions and Project Staff (9%) Overhead (5%) Sond and Insurance (1.35%)	eous (LS \$ Contra LS \$ LS \$ LS \$ LS \$	28,484,190 15,824,550 4,272,629	\$ 43,193,500 \$ 51,343,498 \$ 316,491,000 \$ \$ 28,484,190 \$ 15,824,550 \$ 4,272,629	£ 40,000,050	£ 45.400.000	
Combined Material and Labor Subtotal (including escalation) Miscelland Conditions and Project Staff (9%) Overhead (5%) Sond and Insurance (1.35%) Seneral Contractor Fees (5%)	eous (LS \$ Contra LS \$ LS \$ LS \$ LS \$ LS \$	ctor Cost 28,484,190 15,824,550	\$ 43,193,500 \$ 51,343,498 \$ 316,491,000 \$ \$ 28,484,190 \$ 15,824,550 \$ 4,272,629 \$ 15,824,550	£ 40,000,050	£ 45.400.000	
scalated Total Combined Material and Labor Subtotal (including escalation) Miscellane General Conditions and Project Staff (9%) Verhead (5%) ond and Insurance (1.35%) Veneral Contractor Fees (5%)	eous (LS \$ Contra LS \$ LS \$ LS \$ LS \$ LS \$ LS \$ LS \$	28,484,190 15,824,550 4,272,629	\$ 43,193,500 \$ 51,343,498 \$ 316,491,000 \$ \$ 28,484,190 \$ 15,824,550 \$ 4,272,629 \$ 15,824,550 \$ 15,824,550	£ 40,000,050	£ 45.400.000	
Combined Material and Labor Subtotal (including escalation) Miscelland General Conditions and Project Staff (9%) Overhead (5%) Sound and Insurance (1.35%) General Contractor Fees (5%) Material Sales Tax	eous (LS \$ Contra LS \$ LS \$ LS \$ LS \$ LS \$	28,484,190 15,824,550 4,272,629	\$ 43,193,500 \$ 51,343,498 \$ 316,491,000 \$ \$ 28,484,190 \$ 15,824,550 \$ 4,272,629 \$ 15,824,550 \$	£ 40,000,050	£ 45.400.000	
Combined Material and Labor Subtotal (including escalation) Miscelland Conditions and Project Staff (9%) Overhead (5%) Sond and Insurance (1.35%) Seneral Contractor Fees (5%)	eous (LS \$ Contra LS \$ LS \$ LS \$ LS \$ LS \$ LS \$ LS \$	28,484,190 15,824,550 4,272,629	\$ 43,193,500 \$ 51,343,498 \$ 316,491,000 \$ \$ 28,484,190 \$ 15,824,550 \$ 4,272,629 \$ 15,824,550 \$ 15,824,550	£ 40,000,050	£ 45.400.000	
combined Material and Labor Subtotal (including escalation) Miscelland (including escalation)	eous (LS \$ Contra LS \$ LS \$ LS \$ LS \$ LS \$ LS \$ LS \$	28,484,190 15,824,550 4,272,629	\$ 43,193,500 \$ 51,343,498 \$ 316,491,000 \$ 28,484,190 \$ 15,824,550 \$ 4,272,629 \$ 15,824,550 \$ - \$ 64,406,000 \$ 63,298,171	£ 40,000,050	£ 45.400.000	
scalated Total combined Material and Labor Subtotal (including escalation) Miscelland eneral Conditions and Project Staff (9%) verhead (5%) ond and Insurance (1.35%) eneral Contractor Fees (5%) aterial Sales Tax	eous (LS \$ Contra LS \$ LS \$ LS \$ LS \$ LS \$ LS \$ LS \$	28,484,190 15,824,550 4,272,629	\$ 43,193,500 \$ 51,343,498 \$ 316,491,000 S \$ 28,484,190 \$ 15,824,550 \$ 4,272,629 \$ 15,824,550 \$ - \$ 64,406,000	£ 40,000,050	£ 45.400.000	

Items Specifically Excluded from Estimate

Hardening DPS buildings to prevent flood water intrusion Private Communication Network (assumes use of third party fiber)

ALTERNATE 2 - INSTALL 50 MW SUBSTATION, ELIMINATE STEAM USE, ADD CTGs AND CONVERT TO 60 HZ POWEF

DESCRIPTION	QTY	им	CONS UNIT \$\$	TRU	CTION TOTAL	Construction Contingency	Design Contingency	Escalation Year
	Phas	se 1						
Demolition of T1, T3 and Auxiliaries	1	LS \$	700,000		700,000	20%	30%	
Demolition of T4, T5 and Auxiliaries	1	LS \$	700,000		700,000	20%	30%	
Complete Boiler House Equipment Demolition	1	LS \$	1,700,000		1,700,000	20%	30%	
lew 50 MVA Substation	1	LS \$	14,000,000		14,000,000	20%	20%	
Vest Site Redevelopment and Retention Pond Removal	1	LS \$	5,000,000		5,000,000	20%	30%	
M2500 - Complete Outdoor Package with Gas Compressor - Installed	3	LS \$	16,240,000		48,720,000	20%	20%	
Gas Compressor for LM2500	3	LS \$	750,000		2,250,000	20%	20%	
furbine Install (Struct, Mech, Elec, I&C)	2	LS \$	5,000,000		10,000,000	20%	20%	0004
lant Building to House Engine Generators and Control Room	1	LS \$	7,200,000		7,200,000	20%	30%	2021
uel Gas and Fuel Oil Lines to West Power Complex lew 60 Hz Ring Bus at WPC or PFC Building	1	LS \$	731,700		731,700	20%	30%	
	1	LS \$	2,500,000		2,500,000	20% 20%	30% 30%	
lew Aux Ring Bus at DPS 3	- 2		1,200,000		21 750 000	20%	30%	
lew 25 MW Static Frequency Changer Power Plant Control System	3	LS \$	7,250,000 4,000,000		21,750,000 4,000,000	20%	30%	
lew Carrolton Feeders From West Power Complex to Loads	1	LS \$	1,860,000		1,860,000	20%	30%	
Development and installation of integrated communications & control system, New Equip	1	LS \$	10,000,000		10,000,000	20%	30%	
evelopment and installation of integrated communications & control system, New Equip	_ '	LS \$	10,000,000	\$	10,000,000	2070	30 70	
ubTotal (2019 Dollars)		Ψ		\$	131,111,700	\$ 26,222,000	\$ 31,837,000	
scalated Total				\$	137,749,230	\$ 27,549,489	\$ 33,448,748	
	Phas	e 2A						
Phase 2A DPS 60 Hz Conversions (New Xfmrs, Swgr, 60 Hz Motor, Gearboxes, etc)	1	EA \$	40,800,000	\$	40,800,000	20%	30%	
Phase 2A Feeder Replacements	1	LS \$	25,721,250	\$	25,721,250	20%	30%	0000
•	-	LS \$	-	\$	· · · -			2023
	-	EA \$	-	\$	-			
ubTotal (2019 Dollars)				\$	66,521,250	\$ 13,304,000	\$ 19,956,000	
scalated Total				\$	73,427,013	\$ 14,685,127	\$ 22,027,690	
	Phas	e 2B						
hase 2B DPS 60 Hz Conversions (New Xfmrs, Swgr, 60 Hz Motor, Gearboxes, etc) hase 2B Feeder Replacements	1 1	EA \$ LS \$	14,200,000 9,091,500		14,200,000 9,091,500	20% 20%	30% 30%	2024
nase 2D i eedel iveplacements	'	LS \$	24,550,000		9,091,300	2070	30 /0	2024
SubTotal (2019 Dollars)				\$	23,291,500	\$ 4,658,000	\$ 6,987,000	
scalated Total				\$	26,352,194	\$ 5,270,099	\$ 7,905,149	
	Phas	e 2C						
Phase 2C DPS 60 Hz Conversions (New Xfmrs, Swgr, 60 Hz Motor, Gearboxes, etc)	1	LS \$	29,650,000		29,650,000	20%	30%	
hase 2C Feeder Replacements	1	LS \$	16,644,000		16,644,000	20%	30%	2025
		LS \$	-	\$				
subTotal (2019 Dollars)				\$	46,294,000 53,686,847	\$ 9,259,000 \$ 10,737,601	\$ 13,888,000 \$ 16,105,822	
scalated Total				Þ	53,666,647	\$ 10,737,601	\$ 16,105,622	
	Phas	e 2D						
	1	LS \$	20,650,000	\$	20,650,000	20%	30%	
· · · · · · · · · · · · · · · · · · ·						000/	30%	2026
· · · · · · · · · · · · · · · · · · ·	1	LS \$	22,543,500	\$	22,543,500	20%	30 /0	
hase 2D Feeder Replacements	1	LS \$	22,543,500	\$	-			
hase 2D Feeder Replacements ubTotal (2019 Dollars)	1		22,543,500	\$ \$	43,193,500	\$ 8,639,000	\$ 12,958,000	
hase 2D Feeder Replacements ubTotal (2019 Dollars) scalated Total	1		22,543,500	\$ \$	43,193,500 51,343,498			
hase 2D Feeder Replacements ubTotal (2019 Dollars) scalated Total	1		22,543,500	\$ \$	43,193,500	\$ 8,639,000	\$ 12,958,000	
hase 2D Feeder Replacements ubTotal (2019 Dollars) scalated Total Combined Material and Labor Subtotal (including escalation) Miscellane		LS \$	ctor Cos	\$ \$ \$	43,193,500 51,343,498 342,559,000	\$ 8,639,000	\$ 12,958,000	
whase 2D Feeder Replacements ubTotal (2019 Dollars) scalated Total Combined Material and Labor Subtotal (including escalation) Miscelland General Conditions and Project Staff (9%)	eous C	ontra	ctor Cos	\$ \$ \$	43,193,500 51,343,498 342,559,000	\$ 8,639,000	\$ 12,958,000	
hase 2D Feeder Replacements ubTotal (2019 Dollars) scalated Total Combined Material and Labor Subtotal (including escalation) Miscellane seneral Conditions and Project Staff (9%) everhead (5%)		ontra LS \$ LS \$	ctor Cos 30,830,310 17,127,950	\$ \$ \$ ts	43,193,500 51,343,498 342,559,000 30,830,310 17,127,950	\$ 8,639,000	\$ 12,958,000	
Combined Material and Labor Subtotal (including escalation) Miscelland Conditions and Project Staff (9%) Overhead (5%) Ond and Insurance (1.35%)	eous C	ontra LS \$ LS \$ LS \$ LS \$	ctor Cos 30,830,310 17,127,950 4,624,547	\$ \$ \$ \$ \$ \$	43,193,500 51,343,498 342,559,000 30,830,310 17,127,950 4,624,547	\$ 8,639,000	\$ 12,958,000	
hase 2D Feeder Replacements ubTotal (2019 Dollars) scalated Total combined Material and Labor Subtotal (including escalation) Miscellane eneral Conditions and Project Staff (9%) verhead (5%) ond and Insurance (1.35%) eneral Contractor Fees (5%)	eous C	LS \$ Ontra LS \$ LS \$ LS \$ LS \$	ctor Cos 30,830,310 17,127,950	\$ \$ \$ \$ \$ \$ \$	43,193,500 51,343,498 342,559,000 30,830,310 17,127,950	\$ 8,639,000	\$ 12,958,000	
hase 2D Feeder Replacements ubTotal (2019 Dollars) scalated Total combined Material and Labor Subtotal (including escalation) Miscellane eneral Conditions and Project Staff (9%) verhead (5%) ond and Insurance (1.35%) eneral Contractor Fees (5%)	eous C	Ontra LS \$	ctor Cos 30,830,310 17,127,950 4,624,547	\$ \$ \$ \$ \$ \$	43,193,500 51,343,498 342,559,000 30,830,310 17,127,950 4,624,547	\$ 8,639,000	\$ 12,958,000	
Phase 2D DPS 60 Hz Conversions (New Xfmrs, Swgr, 60 Hz Motor, Gearboxes, etc.) Phase 2D Feeder Replacements SubTotal (2019 Dollars) Secalated Total Combined Material and Labor Subtotal (including escalation) Miscellane General Conditions and Project Staff (9%) Diverhead (5%) Sound and Insurance (1.35%) Seneral Contractor Fees (5%) Material Sales Tax SubTotal	eous C	LS \$ Ontra LS \$ LS \$ LS \$ LS \$	ctor Cos 30,830,310 17,127,950 4,624,547	\$ \$ \$ \$ \$ \$ \$	43,193,500 51,343,498 342,559,000 30,830,310 17,127,950 4,624,547 17,127,950	\$ 8,639,000	\$ 12,958,000	
hase 2D Feeder Replacements ubTotal (2019 Dollars) scalated Total combined Material and Labor Subtotal (including escalation) Miscelland eneral Conditions and Project Staff (9%) verhead (5%) ond and Insurance (1.35%) eneral Contractor Fees (5%) aterial Sales Tax ubTotal	eous C	Ontra LS \$	ctor Cos 30,830,310 17,127,950 4,624,547	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	30,830,310 17,127,950 4,624,547 17,127,950 69,711,000	\$ 8,639,000	\$ 12,958,000	
mase 2D Feeder Replacements JubTotal (2019 Dollars) Scalated Total Ombined Material and Labor Subtotal (including escalation) Miscelland eneral Conditions and Project Staff (9%) verhead (5%) and and Insurance (1.35%) eneral Contractor Fees (5%) aterial Sales Tax	eous C	Ontra LS \$	ctor Cos 30,830,310 17,127,950 4,624,547	\$ \$ \$ \$ \$ \$ \$ \$	30,830,310 17,127,950 4,624,547 17,127,950	\$ 8,639,000	\$ 12,958,000	

Items Specifically Excluded from Estimate

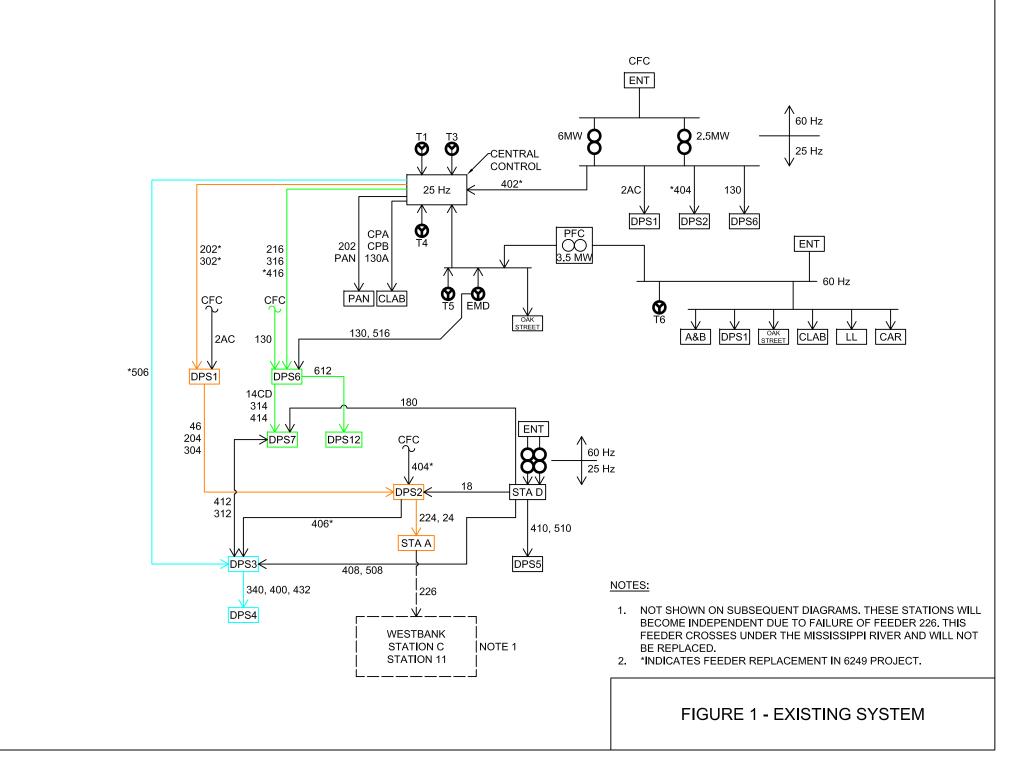
Hardening DPS buildings to prevent flood water intrusion Private Communication Network (assumes use of third party fiber)

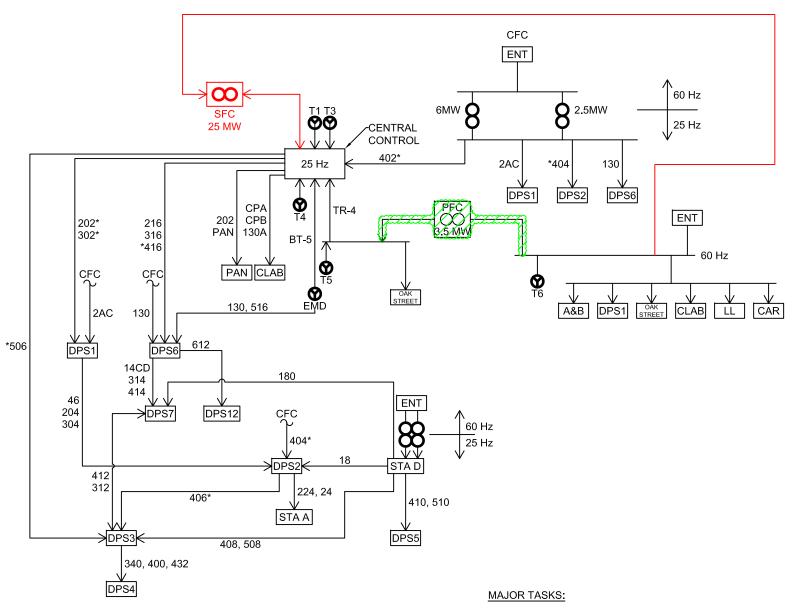
ALTERNATE 3 - INSTALL 50 MW SUBSTATION, ELIMINATE STEAM USE, ADD ENGINE GENERATORS AND CONVERT TO 60 HZ POWER

Page 1			Ţ		CONSTRU	JCTION	Construction	Design	Escalation
Demolition of 11, 13 and Audustraines	DESCRIPTION	QTY	UM	UNIT				_	
Demolition of 11, 13 and Audustraines									
Demolition of 14, 15 and Abusinairies		Pha	se 1						
Complete Dollar House Equipment Demolition	Demolition of T1, T3 and Auxiliaries	1	LS	\$ 7	00,000 \$	700,000	20%	30%	
New SD MAX Sabelation	, -	•			,	,			
West Sile Redevelopment and Releastion Pond Remonal 1		1							
Warstall a 1950 Print Building 0 August S 19,000,000 S 5,000,000 20% 20% 20% 20% 20% 20% 30% 2021 20% 30% 2021 20% 30% 2021 20% 30% 2021 20% 30% 2021 20% 30% 2021 20% 30% 2021 20% 30% 2021 20% 30% 2021 20% 30% 2021 20% 30% 2021 20% 30% 2021 20% 30% 2021 20% 30% 2021 20% 30% 2021 20% 30% 2021 20% 30% 2021 20%		1		, , ,					
Place Company Compan		1							
Final Case and Fuel Oil Lines to West Power Complex 1									
New 60 Hz Ring Bus at WPC or PFC Building		1							2021
New Aux Run Fig. 5		1							
Prover Print Control System New Caroline Todes From West Power Complex to Loads 1 LS \$ 4,000,000 \$ 4,000,000 20% 30% November Power Complex to Loads 1 LS \$ 1,000,000 \$ 1,000,000 20% 30% November Power Complex to Loads 1 LS \$ 1,000,000 \$ 1,000,000 20% 30% November Power Complex to Loads 1 LS \$ 1,000,000 \$ 1,000,000 20% 30% November Power Complex to Loads 1 LS \$ 1,000,000 \$ 1,000,000 20% 30% November Power Complex to Loads 1 LS \$ 1,000,000 \$ 1,000,000 20% 30% November Power Complex to Loads 1 LS \$ 1,000,000 \$ 1,000,000 \$ 20% 30% November Power Complex to Loads 1 LS \$ 1,000,000 \$ 1,000,000 \$ 20% 30% November Power Complex to Loads 1 LS \$ 2,000,000 \$ 2,000 \$ 30% November Power Complex to Loads 1 LS \$ 2,000,000 \$ 2,000 \$ 30% November Power Complex to Loads 1 LS \$ 2,000,000 \$ 2,000 \$ 30% November Power Complex to Loads 1 LS \$ 2,000,000 \$ 2,000 \$ 30% November Power Complex to Loads 1 LS \$ 2,000,000 \$ 2,000 \$ 30% November Power Complex to Loads 1 LS \$ 2,000,000 \$ 2,000 \$ 30% November Power Complex to Loads 1 LS \$ 3,000,000 \$ 2,000 \$ 30% November Power Complex to Loads 1 LS \$ 3,000,000 \$ 2,000 \$ 30% November Power Complex to Loads 1 LS \$ 3,000,000 \$ 2,000 \$ 30% November Power Complex to Loads 1 LS \$ 3,000,000 \$ 2,000 \$ 30% November Power Complex to Loads 1 LS \$ 3,000,000 \$ 2,000 \$ 30% November Power Complex to Loads 1 LS \$ 3,000,000 \$ 2,000 \$ 30% November Power Complex to Loads 1 LS \$ 3,000,000 \$ 2,000 \$ 30% November Power Complex to Loads 1 LS \$ 3,000,000 \$ 2,000 \$ 30% November Power Complex to Loads 1 LS \$ 3,000,000 \$ 2,000 \$ 30% November Power Complex to Loads 1 LS \$ 3,000,000 \$ 2,000 \$ 30% November Power Complex to Loads 1 LS \$ 3,000,000 \$ 2,000 \$ 30% November Power Complex to Loads 1 LS \$ 3,000,000 \$ 2,000 \$ 30% November Power Complex to Loads 1 LS \$ 3,000,000 \$ 2,000 \$ 30% November Power Complex to Loads 1 LS \$ 3,000,000 \$ 2,000 \$ 30% November Power Complex to Loads 1 LS \$ 3,000,000 \$ 2,000 \$ 30% November Power Complex to Loads 1 LS \$ 3,000,000 \$ 2,000 \$ 30% November Power Complex to	New Aux Ring Bus at DPS 3	-	LS	\$ 1,2	00,000 \$	· · · -	20%	30%	
New Carnotion Feeders From West Power Complex to Loads 1	New 25 MW Static Frequency Changer	3		\$ 7,2	50,000 \$		20%	30%	
Devolupment and installation of integrated communications & control system, New Equip 1 LS \$ 10,000,000 20% 30%									
SubTotal (2019 Dollars) SubTotal (2019 D		•							
Sub Total (2019 Dollars) Sub Total (2019 Dol	Development and installation of integrated communications & control system, New Equip	- 1				10,000,000	20%	30%	
Phase 2A	SubTotal (2019 Dollars)			Ψ		129.541.700	\$ 25.908.000	\$ 31.523.000	
Phase 2A DPS 60 Hz Conversions (New Xfmrs, Swgr, 60 Hz Motor, Gearboxes, etc) 1	· · · · · · · · · · · · · · · · · · ·								
Phase 2A DPS 60 Hz Conversions (New Xfmrs, Swgr, 60 Hz Motor, Gearboxes, etc) Phase 2A Feeder Replacements 1									
1 LS \$ 25,721 25 \$ 25,721 25 \$ 20 \$ 30 \$ 2023		Phas	se 2A	١					
SubTotal (2019 Dollars) SubTotal (2019 D	Phase 2A DPS 60 Hz Conversions (New Xfmrs, Swgr, 60 Hz Motor, Gearboxes, etc)	1	EA	\$ 40,8	00,000 \$	40,800,000	20%	30%	
SubTotal (2019 Dollars) SubTotal (2019 D	Phase 2A Feeder Replacements	1	LS	\$ 25,7	21,250 \$	25,721,250	20%	30%	2022
SubTotal (2019 Dollars) SubTotal (2019 D		-				-			2023
Phase 2B			EA	\$		-			
Phase 2B PS 60 Hz Conversions (New Xfmrs, Swgr, 60 Hz Motor, Gearboxes, etc) 1 EA \$ 14,200,000 \$ 14,200,000 20% 30% 2024	· · · · · · · · · · · · · · · · · · ·							, ,,,,,,,,	
Phase 2B DPS 60 Hz Conversions (New Xfmrs, Swgr, 60 Hz Motor, Gearboxes, etc) 1 EA \$ 14,200,000 \$ 14,200,000 20% 30% 2024 Phase 2B Feeder Replacements 1 LS \$ 9,091,500 \$ 9,091,500 20% 30% 2024 SubTotal (2019 Dollars) Escalated Total Phase 2C DPS 60 Hz Conversions (New Xfmrs, Swgr, 60 Hz Motor, Gearboxes, etc) 1 LS \$ 29,650,000 \$ 29,650,000 20% 30% 2025 Phase 2C DPS 60 Hz Conversions (New Xfmrs, Swgr, 60 Hz Motor, Gearboxes, etc) 1 LS \$ 29,650,000 \$ 29,650,000 20% 30% 2025 SubTotal (2019 Dollars) Escalated Total Phase 2D Phase 2D PS 60 Hz Conversions (New Xfmrs, Swgr, 60 Hz Motor, Gearboxes, etc) 1 LS \$ 20,650,000 \$ 20,650,000 20% 30% 2025 SubTotal (2019 Dollars) Escalated Total Phase 2D Ph	Escalated lotal				\$	/3,42/,013	\$ 14,685,127	\$ 22,027,690	
Phase 2B DPS 60 Hz Conversions (New Xfmrs, Swgr, 60 Hz Motor, Gearboxes, etc) 1 EA \$ 14,200,000 \$ 14,200,000 20% 30% 2024 Phase 2B Feeder Replacements 1 LS \$ 9,091,500 \$ 9,091,500 20% 30% 2024 SubTotal (2019 Dollars) Escalated Total Phase 2C DPS 60 Hz Conversions (New Xfmrs, Swgr, 60 Hz Motor, Gearboxes, etc) 1 LS \$ 29,650,000 \$ 29,650,000 20% 30% 2025 Phase 2C Feeder Replacements 1 LS \$ 29,650,000 \$ 29,650,000 20% 30% 2025 SubTotal (2019 Dollars) Escalated Total Phase 2D Phase		Phas	se 2F	3					
### 2024 Phase 2B Feeder Replacements 1 LS \$ 9,091,500 \$ 9,091,500 \$ 0,091,500 \$ 30% 2024	Phase 2B DPS 60 Hz Conversions (New Xfmrs, Swor, 60 Hz Motor, Gearboxes, etc.)	1 114			00 000 \$	14 200 000	20%	30%	
LS 24,550,000 S 23,291,500 S 4,658,000 S 6,987,000 S 26,352,194 S 5,270,099 S 7,905,149 S 20,200,149 S 26,352,194 S 5,270,099 S 7,905,149 S 20,270,000 S 26,352,194 S 5,270,099 S 7,905,149 S 20,000 S 26,352,194 S 5,270,099 S 7,905,149 S 20,000 S 26,352,194 S 5,270,099 S 7,905,149 S 20,000 S 20,650,000 S 20,650		1							2024
Phase 2C DPS 60 Hz Conversions (New Xfmrs, Swgr, 60 Hz Motor, Gearboxes, etc) 1 LS 29,650,000 20% 30% 2025	•		LS	\$ 24,5	50,000 \$	-			
Phase 2C PPS 60 Hz Conversions (New Xfmrs, Swgr, 60 Hz Motor, Gearboxes, etc) Phase 2C Feeder Replacements 1	· · · · · · · · · · · · · · · · · · ·				\$				
Phase 2C DPS 60 Hz Conversions (New Xfmrs, Swgr, 60 Hz Motor, Gearboxes, etc.) 1	Escalated Total				\$	26,352,194	\$ 5,270,099	\$ 7,905,149	
Phase 2C DPS 60 Hz Conversions (New Xfmrs, Swgr, 60 Hz Motor, Gearboxes, etc) Phase 2C Feeder Replacements 1 LS \$ 16,644,000 \$ 16,644,000 \$ 20% 30% 2025 SubTotal (2019 Dollars) Escalated Total Phase 2D Phase 2D DPS 60 Hz Conversions (New Xfmrs, Swgr, 60 Hz Motor, Gearboxes, etc) 1 LS \$ 20,650,000 \$ 20,650,000 \$ 20% 30% 2026 Phase 2D DPS 60 Hz Conversions (New Xfmrs, Swgr, 60 Hz Motor, Gearboxes, etc) 1 LS \$ 20,650,000 \$ 22,643,500 \$ 20% 30% 2026 LS \$ 2,543,500 \$ 22,543,500 \$ 20,650,000 \$ 20% 30% 2026 SubTotal (2019 Dollars) Escalated Total Miscellaneous Contractor Costs General Conditions and Project Staff (9%) 1 LS \$ 30,681,810 \$ 30,681,810 \$ 30,681,810 \$ 10,269,056 \$ 15,402,990 Miscellaneous Contractor Costs General Contractor Fees (5%) 1 LS \$ 17,045,450 \$ 17,045,450 \$ 17,045,450 \$ 10,45450 \$ 10,45450 \$ 11,045,450		Dha	20 20	•					
Phase 2C Feeder Replacements	Phase 2C DPS 60 Hz Conversions (New Xfmrs, Swgr, 60 Hz Motor, Gearboxes, etc.)	1			50.000 \$	29.650.000	20%	30%	
SubTotal (2019 Dollars) SubTotal (2019 D		1							2025
Phase 2D Phase 2D Phase 2D						-			
Phase 2D Phase 2D DPS 60 Hz Conversions (New Xfmrs, Swgr, 60 Hz Motor, Gearboxes, etc) 1 LS \$ 20,650,000 \$ 20,650,000 \$ 20% 30% 2026 Phase 2D Feeder Replacements 1 LS \$ 22,543,500 \$ 22,543,500 20% 30% 2026 SubTotal (2019 Dollars) \$ 43,193,500 \$ 8,639,000 \$ 12,958,000 \$ 15,402,990 Escalated Total Miscellaneous Contractor Costs General Conditions and Project Staff (9%) 1 LS \$ 30,681,810 \$ 30,681,810 \$ 30,681,810 \$ 00,464,550 \$ 17,045,450 \$ 1	SubTotal (2019 Dollars)				\$	46,294,000	\$ 9,259,000	\$ 13,888,000	
Phase 2D DPS 60 Hz Conversions (New Xfmrs, Swgr, 60 Hz Motor, Gearboxes, etc) Phase 2D Feeder Replacements 1 LS \$ 20,650,000 \$ 20,650,000 20% 30% 2026 LS \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	Escalated Total				\$	53,686,847	\$ 10,737,601	\$ 16,105,822	
Phase 2D DPS 60 Hz Conversions (New Xfmrs, Swgr, 60 Hz Motor, Gearboxes, etc) Phase 2D Feeder Replacements 1 LS \$ 20,650,000 \$ 20,650,000 20% 30% 2026 LS \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$									
Phase 2D Feeder Replacements 1 LS \$ 22,543,500 \$ 22,543,500 20% 30% 2026 SubTotal (2019 Dollars) Escalated Total Combined Material and Labor Subtotal (including escalation) SubTotal (2019 Dollars)							000/	2001	
LS \$ - \$ \$ 43,193,500 \$ 8,639,000 \$ 12,958,000 \$ 51,343,498 \$ 10,269,056 \$ 15,402,990						-,,			2026
\$\frac{43,193,500}{51,343,498} \frac{8}{51,343,498} \frac{10,269,056}{51,343,498} \frac{15,402,990}{10,269,056} \frac{15,402,990}{15,402,990} \rightarrow \frac{15,402,990}{15,402,450} \rightarrow \frac{15,402,902}{15,402,450} \rightarrow	Phase 2D Feeder Replacements	1				22,543,500	20%	30%	2026
State Total State Total State Total State Total Construction Contingency State Total Construction Contingency State Total Construction Contingency State S	SubTotal (2019 Dollars)			Ψ		43.193.500	\$ 8,639,000	\$ 12.958.000	
Miscellaneous Contractor Costs General Conditions and Project Staff (9%) 1 LS \$ 30,681,810 \$ 30,681,810 Overhead (5%) 1 LS \$ 17,045,450 \$ 17,045,450 Bond and Insurance (1.35%) 1 LS \$ 4,602,272 \$ 4,602,272 General Contractor Fees (5%) 1 LS \$ 17,045,450 \$ 17,045,450 Material Sales Tax 1 LS \$ - \$ - SubTotal \$ 69,375,000 Total Construction Contingency \$ 68,181,476 Total Design Contingency \$ 94,560,503	· · · · · · · · · · · · · · · · · · ·								
Miscellaneous Contractor Costs General Conditions and Project Staff (9%) 1 LS \$ 30,681,810 \$ 30,681,810 Overhead (5%) 1 LS \$ 17,045,450 \$ 17,045,450 Bond and Insurance (1.35%) 1 LS \$ 4,602,272 \$ 4,602,272 General Contractor Fees (5%) 1 LS \$ 17,045,450 \$ 17,045,450 Material Sales Tax 1 LS \$ - \$ - SubTotal \$ 69,375,000 Total Construction Contingency \$ 68,181,476 Total Design Contingency \$ 94,560,503					-			<u> </u>	l
General Conditions and Project Staff (9%) 1 LS \$ 30,681,810 \$ 30,681,810 Overhead (5%) 1 LS \$ 17,045,450 \$ 17,045,450 Bond and Insurance (1.35%) General Contractor Fees (5%) 1 LS \$ 1,7045,450 \$ 17,045,450 Material Sales Tax 1 LS \$ - \$	Combined Material and Labor Subtotal (including escalation)				\$	340,909,000			
General Conditions and Project Staff (9%) Overhead (5%) 1 LS \$ 30,681,810 \$ 30,681,810 Overhead (5%) 1 LS \$ 17,045,450 \$ 17,045,450 Bond and Insurance (1.35%) General Contractor Fees (5%) 1 LS \$ 17,045,450 \$ 17,045,450 IT,045,450 \$ 17,045,450 Material Sales Tax 1 LS \$ - \$ LS \$ - \$ LS \$ - \$ - S - LS \$ - \$ - S - LS \$ - \$ - S - S - S - S - S - S - S - S	Miccollone		`antı	rootor	Cooto				
Overhead (5%) 1 LS \$ 17,045,450 \$ 17,045,450 Bond and Insurance (1.35%) 1 LS \$ 4,602,272 \$ 4,602,272 General Contractor Fees (5%) 1 LS \$ 17,045,450 \$ 17,045,450 Material Sales Tax 1 LS \$ - \$ - SubTotal \$ 69,375,000 Total Construction Contingency \$ 68,181,476 Total Design Contingency \$ 94,560,503						30 681 810			
Bond and Insurance (1.35%) Bond and Insurance (1.35%) General Contractor Fees (5%) Material Sales Tax 1 LS \$ 4,602,272 \$ 4,602,272 \$ 17,045,450									
Material Sales Tax									
Construction Contingency September S	General Contractor Fees (5%)	1	LS						
SubTotal \$ 69,375,000 Total Construction Contingency \$ 68,181,476 Total Design Contingency \$ 94,560,503	Material Sales Tax	1				-			
Total Construction Contingency \$ 68,181,476 Total Design Contingency \$ 94,560,503	SubTotal		LS	\$		EQ 37E 000			
Total Design Contingency \$ 94,560,503	Jub i Viai				Þ	09,375,000			
Total Design Contingency \$ 94,560,503	Total Construction Contingency				\$				
Total Construction Cost \$ 573,026,000	Total Design Contingency				\$	94,560,503	•		
Total Construction Cost \$ 573,026,000							Ī		
	Total Construction Cost				\$	573,026,000			

Items Specifically Excluded from Estimate

Hardening DPS buildings to prevent flood water intrusion Private Communication Network (assumes use of third party fiber)


ALTERNATE 4 - INSTALL 120 MW SUBSTATION, ELIMINATE STEAM USE, ADD CTGs AND CONVERT TO 60 HZ POWEF


DESCRIPTION	QTY UM		CONST UNIT \$\$	RUCTION TOTAL	Construction Contingency	Design Contingency	Escalation Year
		_					
	Phase	-					
Demolition of T1, T3 and Auxiliaries Demolition of T4, T5 and Auxiliaries	1 LS 1 LS		700,000		20% 20%	30% 30%	
Complete Boiler House Equipment Demolition	1 LS		700,000 1,700,000		20%	30%	
lew 120 MVA Substation	1 LS		16,000,000		20%	20%	
Vest Site Redevelopment and Retention Pond Removal	1 LS		5,000,000		20%	30%	
M2500 - Complete Outdoor Package with Gas Compressor - Installed	3 LS		16,240,000		20%	20%	
Sas Compressor for LM2500	3 LS		750,000		20%	20%	
Turbine Install (Struct, Mech, Elec, I&C)	2 LS		5,000,000		20%	20%	
Plant Building to House Engine Generators and Control Room	1 LS		7,200,000		20%	30%	2021
ruel Gas and Fuel Oil Lines to West Power Complex	1 LS		731,700		20%	30%	2021
lew 60 Hz Ring Bus at WPC or PFC Building	1 LS		2,500,000		20%	30%	
lew Aux Ring Bus at DPS 3	- LS		1,200,000		20%	30%	
New 25 MW Static Frequency Changer	3 LS		7,250,000		20%	30%	
Power Plant Control System	1 LS		4,000,000	, ,	20%	30%	
lew Carrolton Feeders From West Power Complex to Loads	1 LS		1,860,000		20%	30%	
Development and installation of integrated communications & control system, New Equip	1 LS		10,000,000		20%	30%	
		\$		\$ -			
SubTotal (2019 Dollars)				\$ 133,111,700	\$ 26,622,000	\$ 32,237,000	
scalated Total				\$ 139,850,480	\$ 27,969,739	\$ 33,868,998	
	Phase 2	2 ^					
Phase 2A DPS 60 Hz Conversions (New Xfmrs, Swgr, 60 Hz Motor, Gearboxes, etc)	Phase A		40,800,000	\$ 40,800,000	20%	30%	
Phase 2A Feeder Replacements	1 LS		25,721,250	,,	20%	30%	
Table 2.11 code 1 topiacomente	- LS			\$ -	2070	0070	2023
	- EA			\$ -			
SubTotal (2019 Dollars)				\$ 66,521,250	\$ 13,304,000	\$ 19,956,000	
scalated Total				\$ 73,427,013	\$ 14,685,127	\$ 22,027,690	
	Phase 2	2B					
Phase 2B DPS 60 Hz Conversions (New Xfmrs, Swgr, 60 Hz Motor, Gearboxes, etc)	1 EA		14,200,000	\$ 14,200,000	20%	30%	
Phase 2B Feeder Replacements	1 LS		9,091,500		20%	30%	2024
	LS	\$	24,550,000				
SubTotal (2019 Dollars)						\$ 6,987,000	
scalated Total			L	\$ 26,352,194	\$ 5,270,099	\$ 7,905,149	
	Phase 2	2C					
Phase 2C DPS 60 Hz Conversions (New Xfmrs, Swgr, 60 Hz Motor, Gearboxes, etc)	1 LS	\$	29,650,000	\$ 29,650,000	20%	30%	
Phase 2C Feeder Replacements	1 LS		16,644,000		20%	30%	2025
······	LS			\$ -			
SubTotal (2019 Dollars)				\$ 46,294,000	\$ 9,259,000	\$ 13,888,000	
scalated Total				\$ 53,686,847	\$ 10,737,601	\$ 16,105,822	
	Phase 2	חמ					
Phase 2D DPS 60 Hz Conversions (New Xfmrs, Swgr, 60 Hz Motor, Gearboxes, etc)	1 LS		20,650,000	\$ 20,650,000	20%	30%	
Phase 2D Feeder Replacements	1 LS	\$	22,543,500	\$ 22,543,500	20%	30%	2026
·	LS	\$	-	\$ -			
SubTotal (2019 Dollars)				\$ 43,193,500 \$ 51,343,498	\$ 8,639,000 \$ 10,269,056	\$ 12,958,000 \$ 15,402,990	
					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Combined Material and Labor Subtotal (including escalation)				\$ 344,660,000			
Miscellane	eous Con	ıtra	ctor Cost	S			
General Conditions and Project Staff (9%)	1 LS		31,019,400				
Overhead (5%)	1 LS		17,233,000				
Sond and Insurance (1.35%)	1 LS		4,652,910				
General Contractor Fees (5%) Material Sales Tax	1 LS 1 LS		17,233,000	\$ 17,233,000 \$ -			
naterial Jaies 1 dX	- LS			\$ - \$ -			
GubTotal		Ψ		\$ 70,138,000			
otal Construction Contingency otal Design Contingency				\$ 68,931,622 \$ 95,310,650			
Total Construction Cost							

Items Specifically Excluded from Estimate

Hardening DPS buildings to prevent flood water intrusion Private Communication Network (assumes use of third party fiber)

Appendix H Phasing Diagrams

- 1. PREPARE WEST POWER COMPLEX.
- 2. INSTALL NEW 25 MW SFC.

FIGURE 2 - EXISTING SYSTEM TO INSTALLATION OF STATIC FREQUENCY CHANGER (SFC)

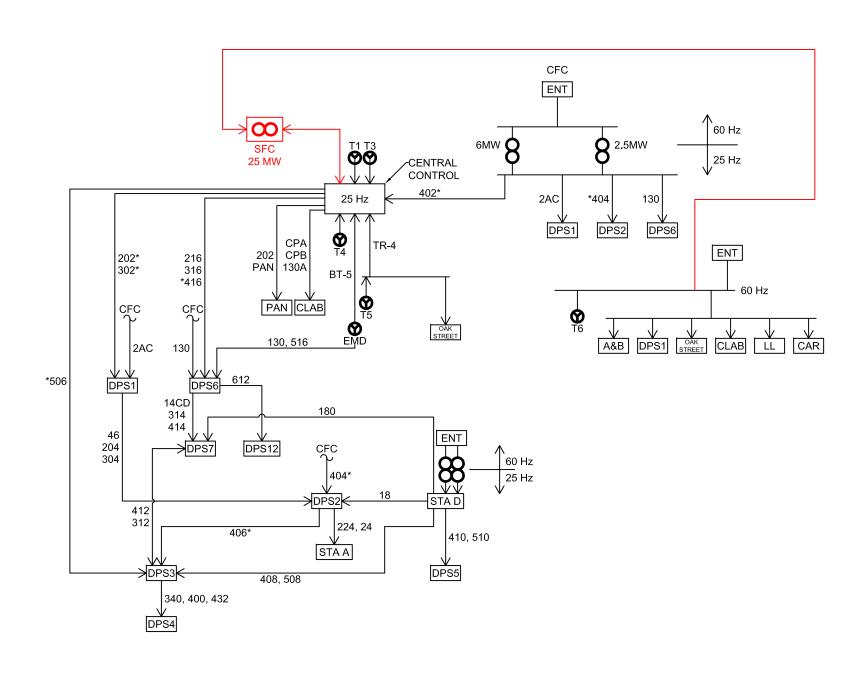


FIGURE 3 - STATIC FREQUENCY CHANGER (SFC) ADDITION COMPLETE

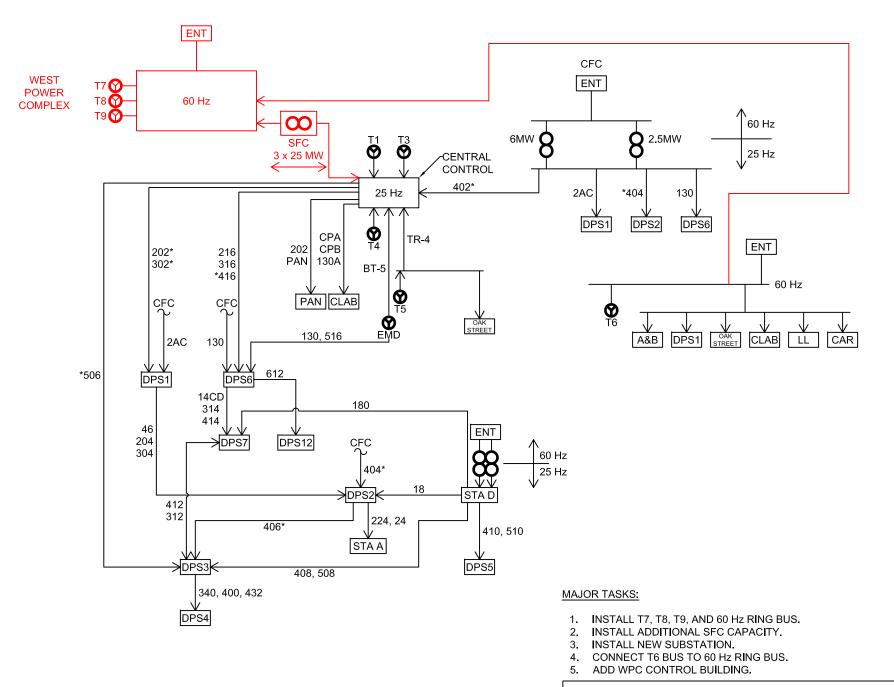
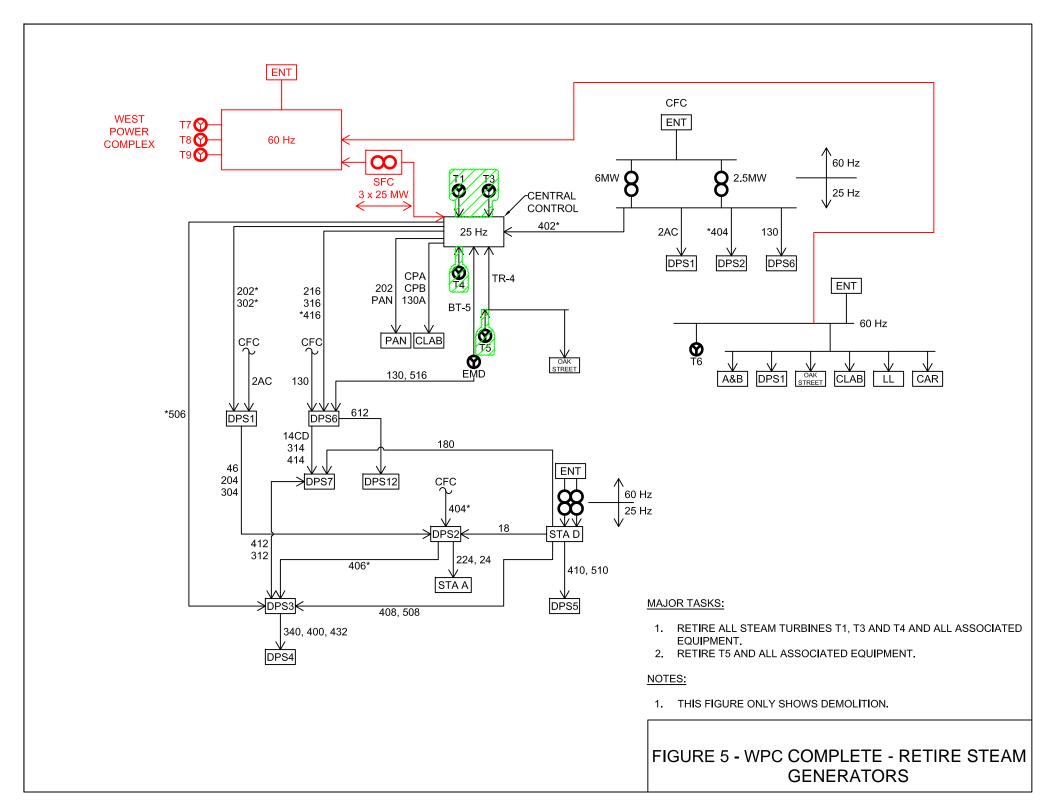



FIGURE 4 - EXISTING SYSTEM TO CONSTRUCTION OF WPC

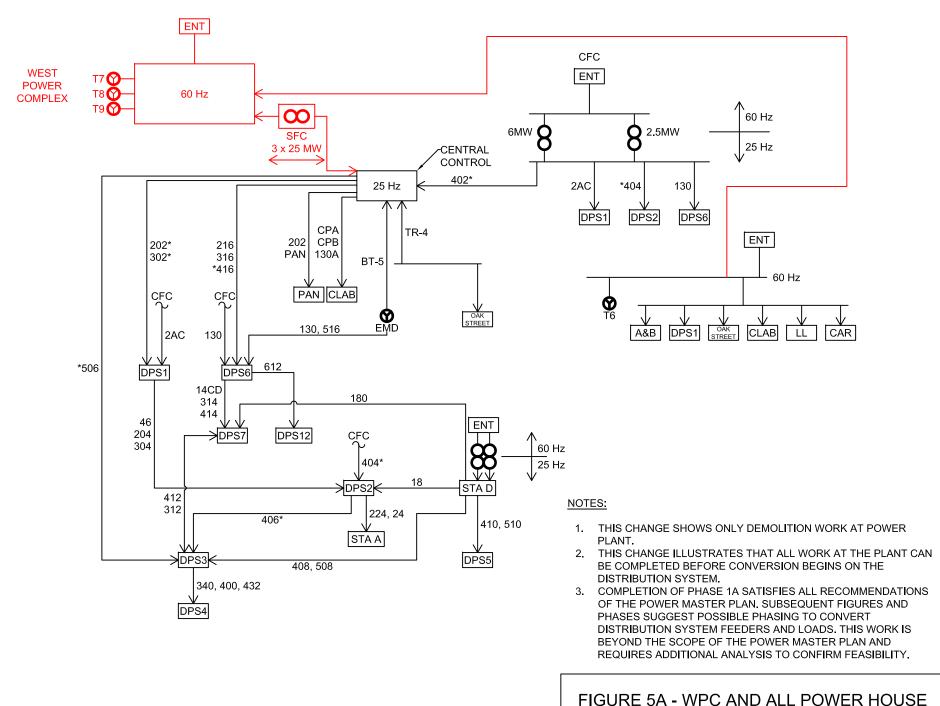
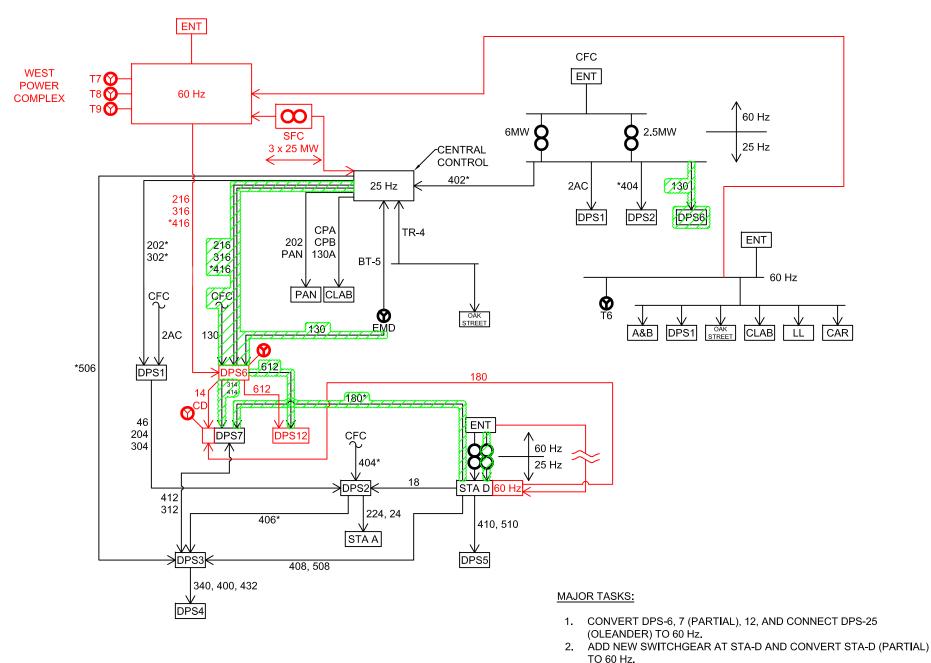
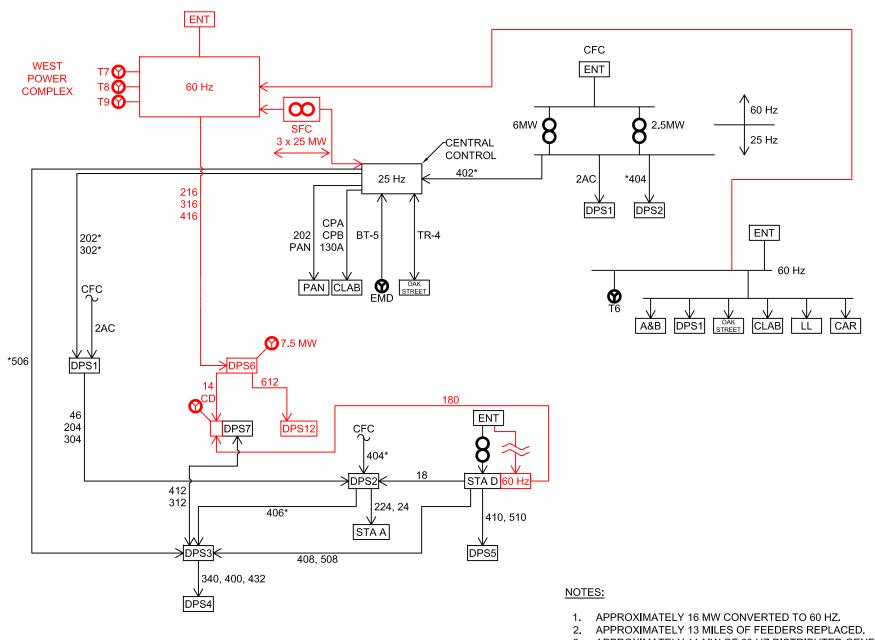




FIGURE 5A - WPC AND ALL POWER HOUSE WORK COMPLETE - PHASE 1 COMPLETE

10 00112.

FIGURE 6 - TRANSITION TO PHASE 2A

3. APPROXIMATELY 11 MW OF 60 HZ DISTRIBUTED GENERATION ADDED.

FIGURE 7 - PHASE 2A COMPLETE

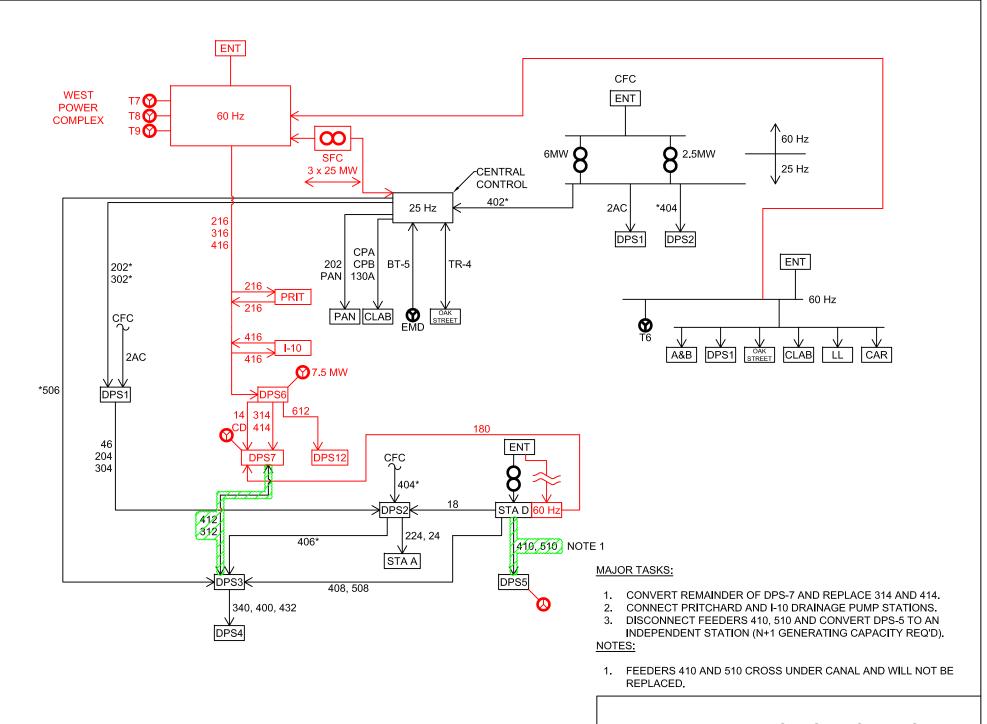
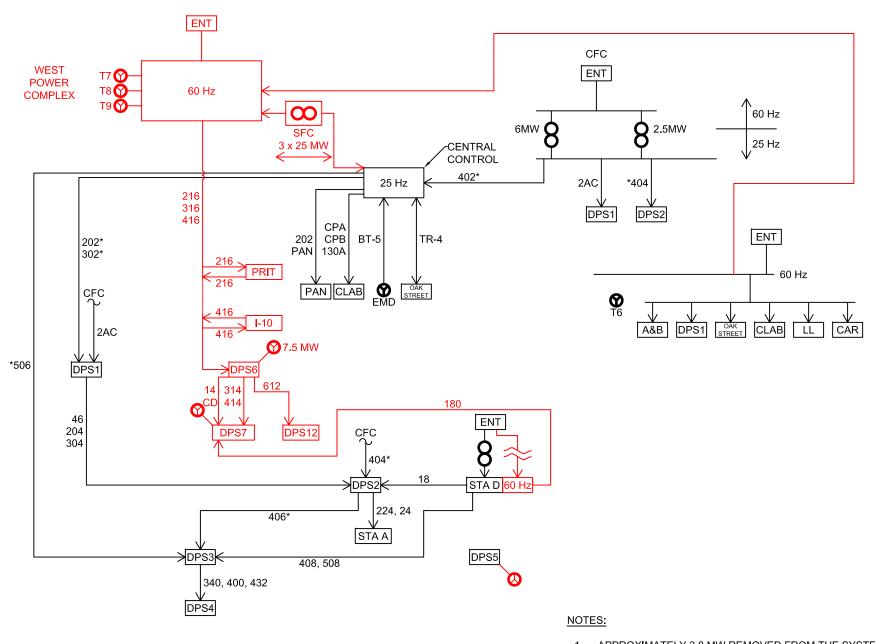
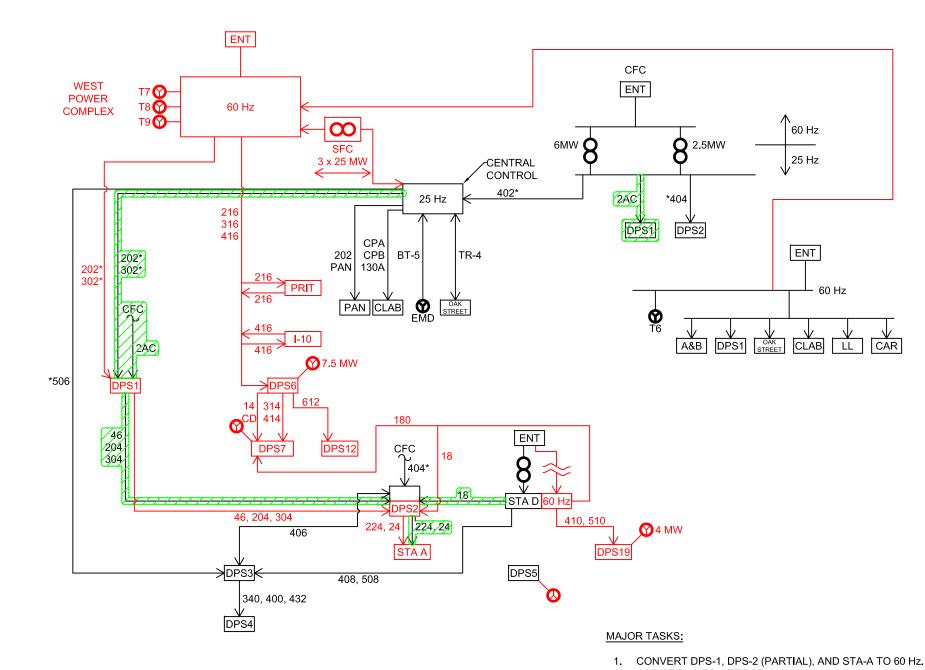
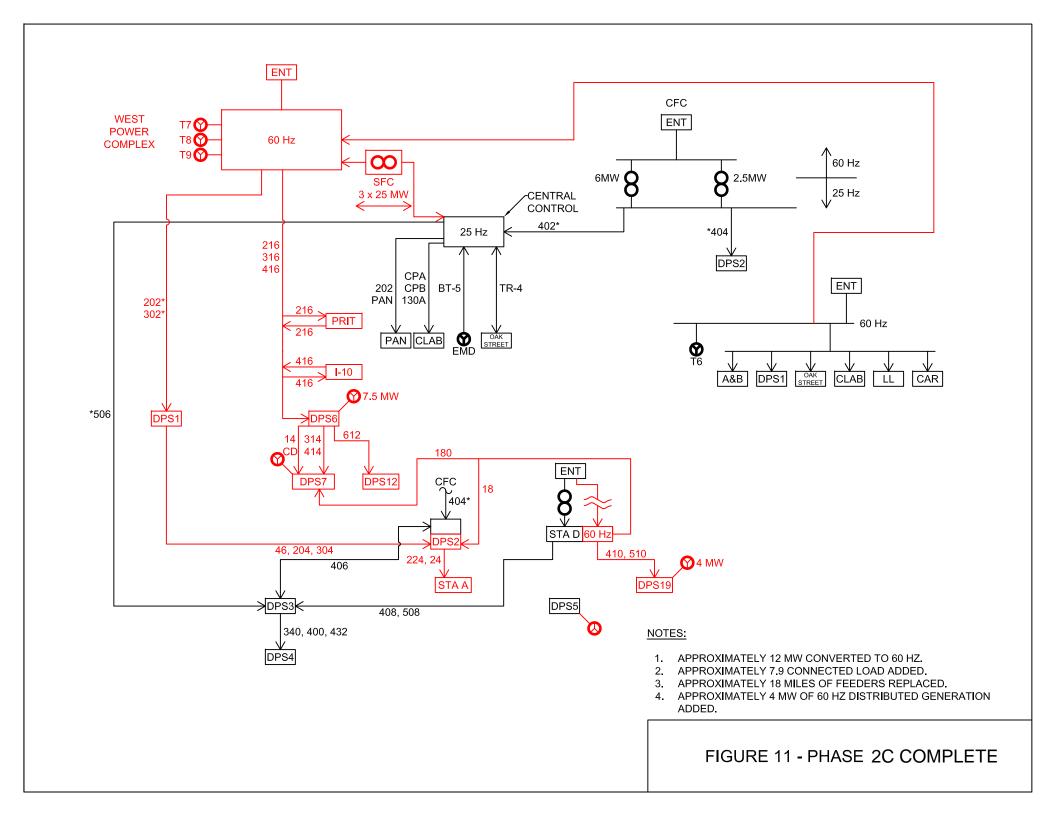
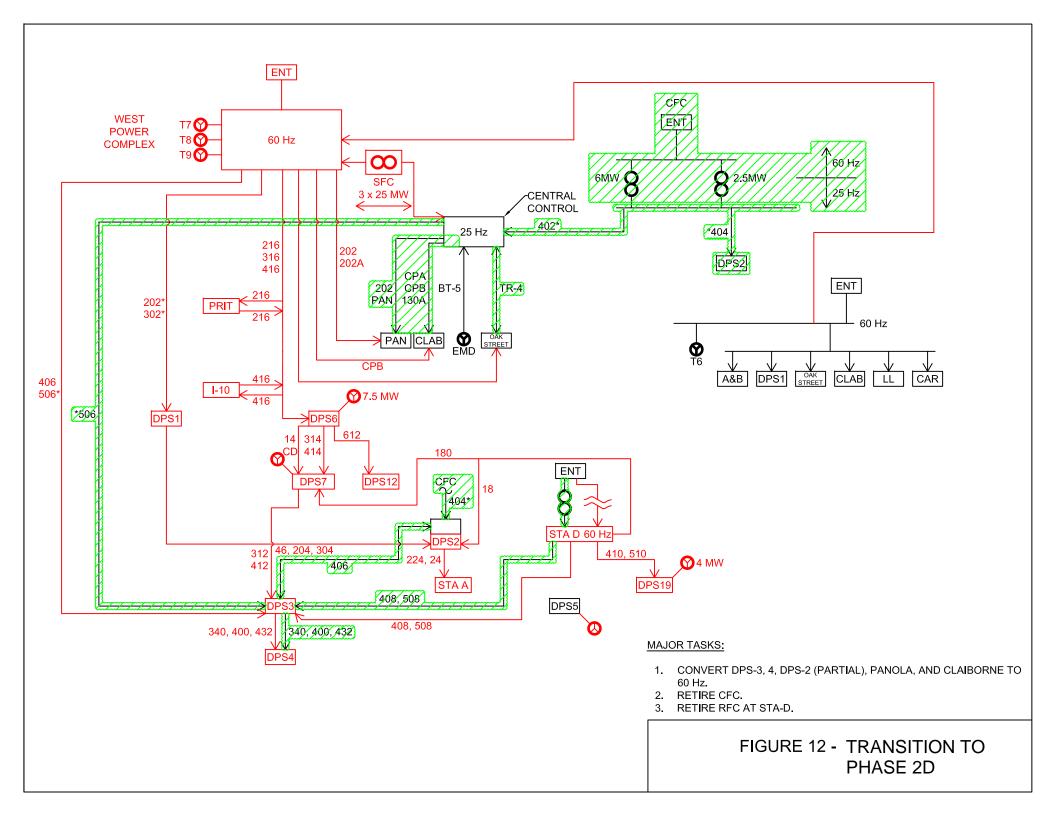




FIGURE 8 - TRANSITION TO PHASE 2B


- 1. APPROXIMATELY 3.8 MW REMOVED FROM THE SYSTEM.
- 2. APPROXIMATELY 3 MILES OF FEEDERS REPLACED.


FIGURE 9 - PHASE 2B COMPLETE

- 2. ADD DPS-19 TO NETWORK.

FIGURE 10 - TRANSITION TO PHASE 2C

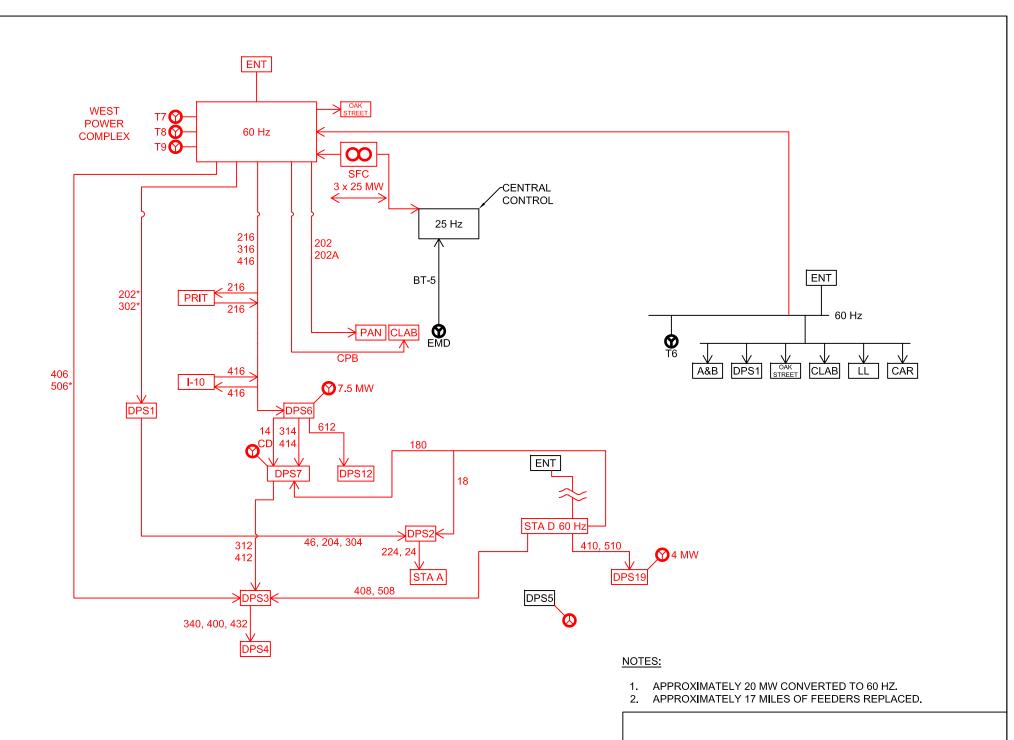
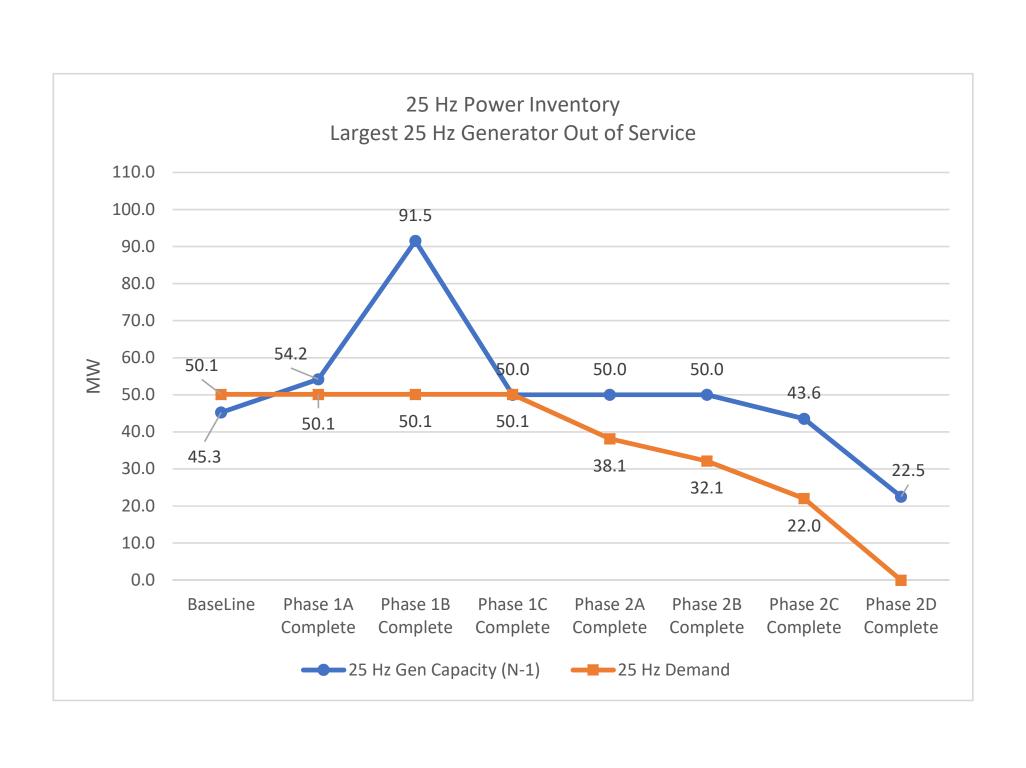
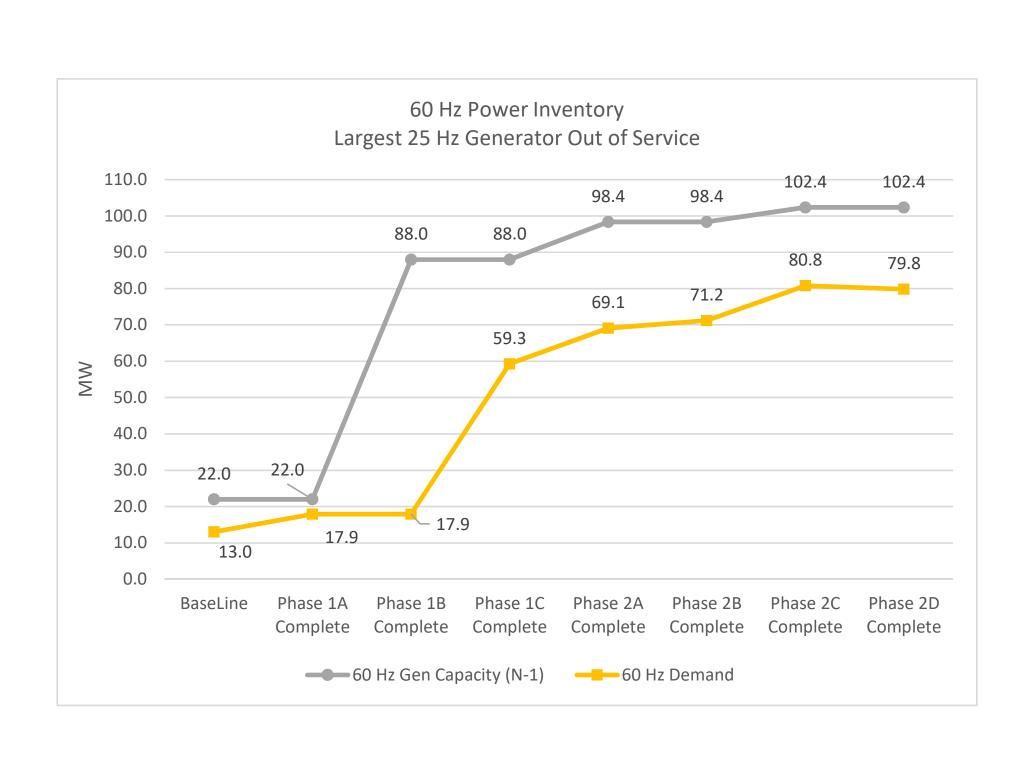
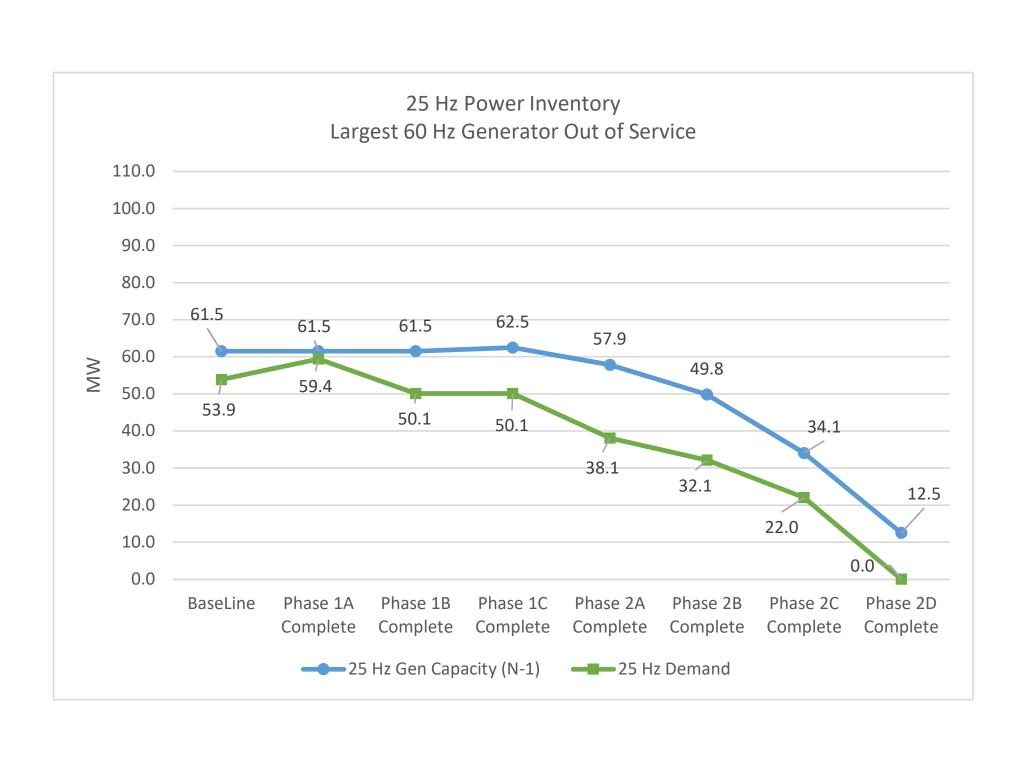
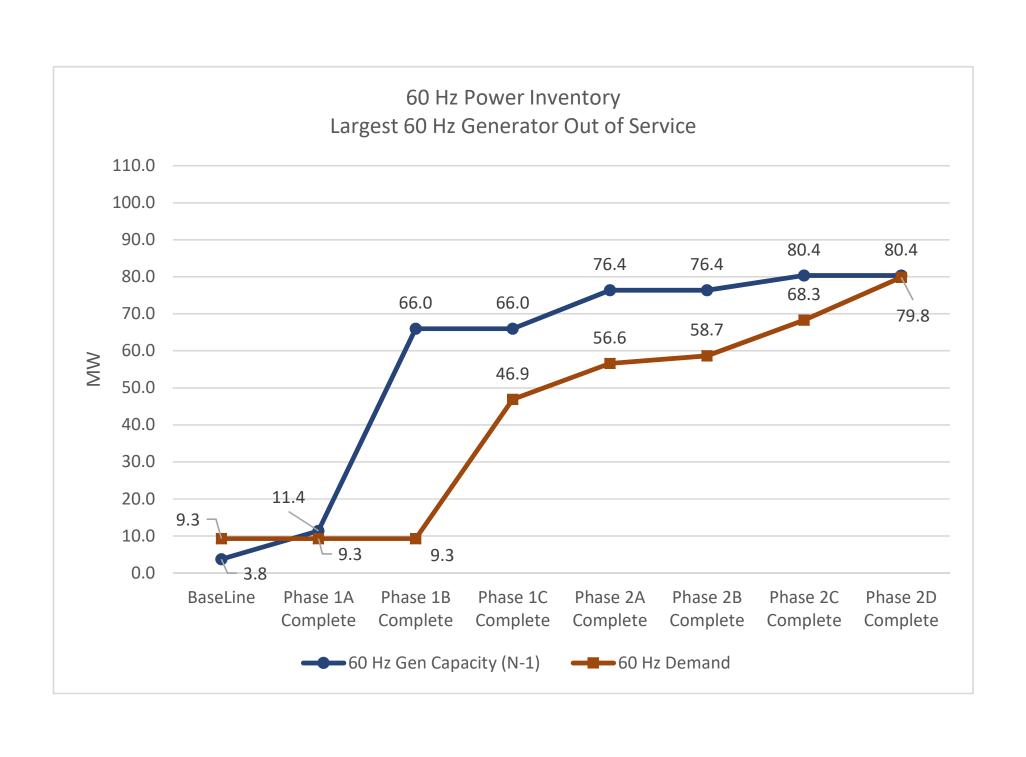






FIGURE 13 - PHASE 2D COMPLETE

Appendix I
Financing Options for Power Master Plan
Alternatives

1515 Poydras Street, Suite 1260 New Orleans, Louisiana 70112 United States

www.jacobs.com

Subject Financing Options for Power Master Plan Alternatives -

FINAL

Attention Bob Turner

From Jacobs

Date March 19, 2020

Copies to Ghassan Korban, Eric Labat, Yvette Downs, Tyler Antrup

This memorandum summarizes several financing options identified as potential mechanisms for implementing the significant capital investments that have been identified through the Power Master Planning studies conducted for the Sewerage and Water Board of New Orleans (SWBNO) power generation facilities. Preliminary financial impacts for financing options were presented and discussed with SWBNO at a workshop on February 3, 2020.

Alternatives Considered in the Financial Analysis

Primary attention in this financial analysis focuses on Alternative 3, the preferred option in the power master plan study. Because of the significant capital cost required to implement Alternative 3, this financing review also looks at a variation of Alternative 3, which would include financing only the West Power Complex portion of the project at this time (referred to as Alternative 3A). While all of the benefits of fully implementing Alternative 3 would not be accomplished with this approach, the annual operational cost savings associated with Alternative 3 would still be realized by implementing Alternative 3A.

Table 1 - Projected Annual Savings

POWER MASTER PLAN OPTIONS AND SPENDING PROFILE								
			Annua	Cost Items				
		Annual Purcha	sed Utility Costs	Incremental	Total Annual			
Option	Estimated Installed Costs	Fuel	Electricity	Annual O&M Costs	Savings With Alternate 3 or 3A			
Alternate 0 (Baseline Conditions)	\$508,271,000	\$10,427,000	\$2,936,000	\$4,814,000				
Alternate 3 (Recommended Option: Total Power Replacement)	\$573,026,000	\$207,000	\$6,237,000	\$1,943,000				
Alternate 3A (West Power Complex Only Program)	\$230,424,000	\$207,000	\$6,237,000	\$1,943,000				
Annual Savings with Alternate 3 or Alternate 3A compared with Alt 0		\$10,220,000	-\$3,301,000	\$2,871,000	\$9,790,000			

Note: Annual Purchased Utility Costs are actual costs based on current conditions for Alternate 0, and projected costs for Alternate 3 based on assumptions summarized in the Power Master Plan report. Actual O&M costs are not available, and are estimated for all Alternates.

Financing Options for Power Master Plan Alternatives - FINAL

1. Financing Options Identified for Consideration

Two financing options are identified for consideration, in conjunction with a traditional municipal bonding approach for comparison:

- Water Infrastructure Financing and Innovation Act (WIFIA) Loan through US EPA
- Energy Service Corporation (ESCO) model

For both of these options, it is assumed that SWBNO will take advantage of \$54 M in capital outlay funds that have been identified by the State of Louisiana to support this project.

The WIFIA loan option assumes that SWBNO would build upon its success in Year 3 (2019) of the WIFIA program by submitting a letter of interest (LOI) for the power plant capital project in Year 4 (2020) of the program. WIFIA loans are attractive due to delayed payback period and low interest rates.

In the ESCO option, SWBNO would capitalize on projected savings to construct the power plant project and then partner with a private team that would agree to provide energy and operational services. ESCO arrangements are attractive options when savings from a project are enough to finance a number of capital projects without additional bonding. Typical attributes of the ESCO approach include:

- Long-term arrangement with a private provider that includes price guarantees;
- Often tied in with a private O&M contract as part of a long-term concession-type arrangement;
- Savings that can be realized from current energy costs and other operational savings can be used by the private team to pay for a portion of capital needs;
- · Public ownership of assets is maintained.

In addition to the main financing scenarios outlined, a summary table of potential funding resources is included as an attachment to this memorandum for reference.

Financing Options for Power Master Plan Alternatives - FINAL

2. Preliminary Financial Impacts of the Financing Options

This section provides high-level preliminary illustrations of the potential impact of the financing options described above.

2.1 WIFIA Loan through US EPA

Figure 1 illustrates the potential outcome of implementing Alternative 3 with a combination of a WIFIA loan and municipal bonding. As shown in the figure, participating in the WIFIA loan program would delay the period of peak debt service payments, which are estimated to peak at roughly \$30 M per year.

Figure 1 - \$573M Project with WIFIA and Municipal Bonding

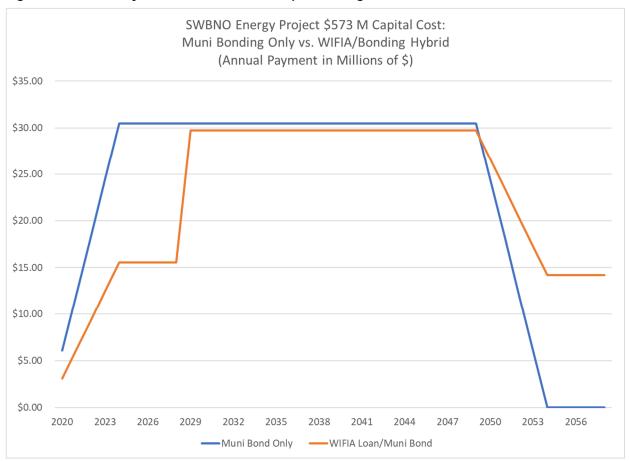


Figure 2 shows the WIFIA loan option for Alternative 3A. As shown in the figure, participating in the WIFIA loan program would delay the period of peak debt service payments, which are estimated to peak at roughly \$10 M per year.

Jacobs

Financing Options for Power Master Plan Alternatives - FINAL

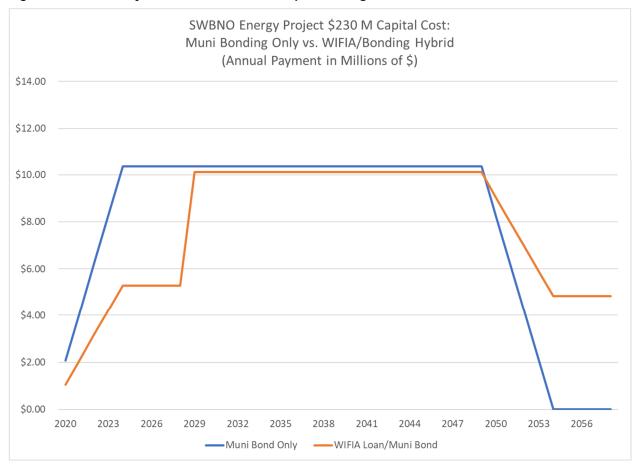


Figure 2 - \$230M Project with WIFIA and Municipal Bonding

2.2 Energy Service Corporation (ESCO) model

Interest rates/rates of return on capital for private development firms are higher than the municipal borrowing rates that SWBNO achieves when it goes to municipal bond market. Table 2 illustrates the potential capital project costs that a private team might be able to provide based on the purchased power and operational savings identified for this project at various levels of private borrowing for 20- or 30-year terms.

The specific amount of capital project investment that an ESCO-type arrangement might provide could only really be market tested by seeking bids or qualifications to see what offers are received. The information in Table 2 suggests that with a 30-year, long-term arrangement, a private team might be able to cover more than \$100 M of the capital investment required to implement the power project. The remainder of the capital costs would need to be otherwise financed by SWBNO.

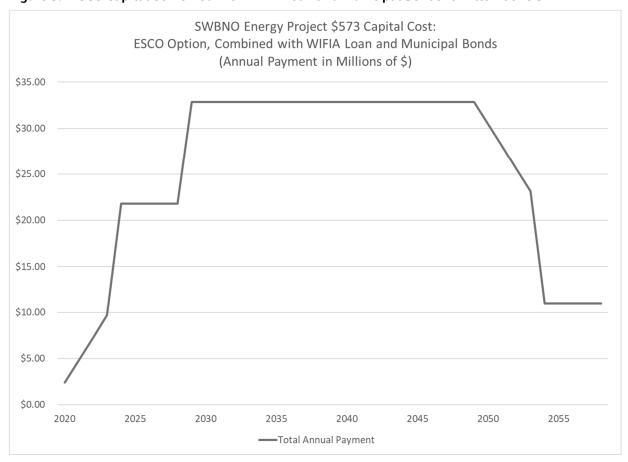

Financing Options for Power Master Plan Alternatives - FINAL

Table 2 – Potential Capital Cost Financing by an ESCO

Capital Investment Principal Supported by \$9.7 M in Annual Energy Plant Operational Savings									
		Privat	e Borrowing	g Rate					
Assumptions	6.5%	7.0%	7.5%	8.0%	8.5%				
Borrowing Term (years)	20	\$107.87	\$103.72	\$99.80	\$96.12	\$92.65			
Borrowing Term (years)	30	\$127.84	\$121.48	\$115.62	\$110.21	\$105.21			

Figure 3 shows the projected capital revenue requirements for SWBNO to build Alternative 3 if an ESCO arrangement is part of the financing solution. Based on Table 2, this analysis assumes the ESCO partner will provide financing for \$115 M of the capital costs of the project., SWBNO's financial obligations to the ESCO partner will include the \$9.7 M per year projected savings in energy and operating costs for 30 years. The remaining capital costs are assumed to be paid with the \$54M in state funds, and a combination of WIFIA loan and municipal bonds. As shown in Figure 3, this is the most expensive of the three financing options presented; annual capital payment costs would be approximately \$33 M per year during the peak period of repayment for this option.

Figure 3. ESCO Capital Combined with WIFIA Loan and Municipal Bonds for Alternative 3

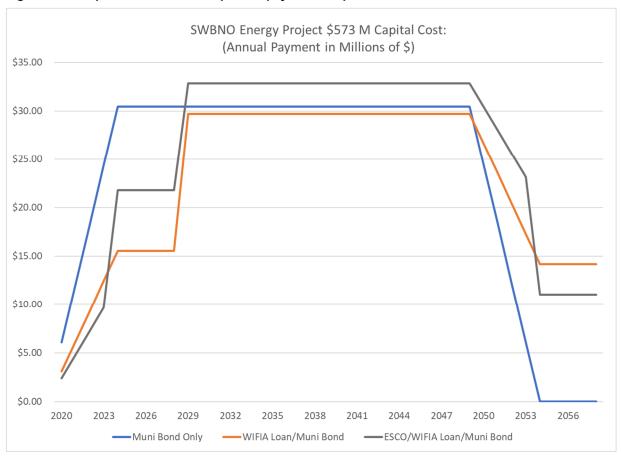
Financing Options for Power Master Plan Alternatives - FINAL

Figure 4 shows the project capital revenue requirements for SWBNO to build Alternative 3A if an ESCO arrangement is part of the financing solution. Based on Table 2, this analysis assumes the ESCO partner will provide financing for \$115 M of the capital costs of the project. SWBNO's financial obligations to the ESCO partner will include the \$9.7 M per year projected savings in energy and operating costs for 30 years. The remaining capital costs are assumed to be paid through the \$54M in state funds, and a combination of WIFIA loan and municipal bonds. As shown in Figure 4, this financing option would result in annual capital payments of approximately \$13 M per year during the peak period of repayment

SWBNO Energy Project \$230 Capital Cost: ESCO Option, Combined with WIFIA Loan and Municipal Bonds (Annual Payment in Millions of \$) \$14.00 \$12.00 \$10.00 \$8.00 \$6.00 \$4.00 \$2.00 \$0.00 2040 2025 2030 2045 2050 2055 2020 2035 ---Total Annual Payment

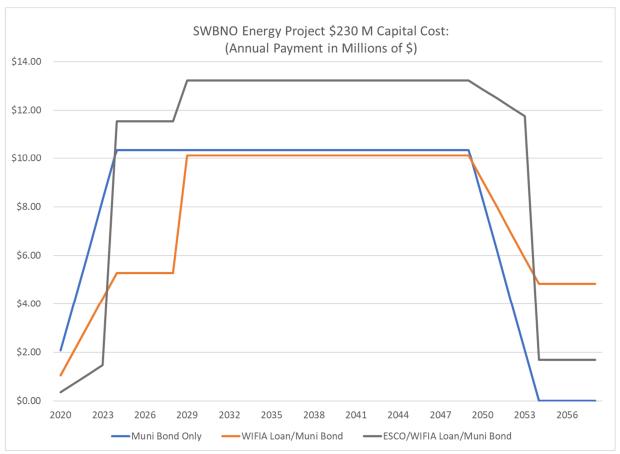
Figure 4. ESCO Capital Combined with WIFIA Loan and Municipal Bonds for Alternative 3A

2.3 Comparison of Financing Options


The detailed information for each option above can be summarized into single graphs for Alternatives 3 and 3A, respectively, to more directly illustrate how SWBNO's capital requirements would vary with the different financing options. Figure 5 shows SWBNO's estimated annual payment for the full \$573M project considering the three financing options (bonding only, WIFIA/bonding hybrid, and ESCO/WIFIA/bonding hybrid). Figure 6 shows the estimated payments for Alternative 3A (the \$230M option). The ESCO option is the least financially attractive for both Alternative 3 and Alternative 3A, because of the higher assumed cost of capital through a private provider.

Financing Options for Power Master Plan Alternatives - FINAL

For the bonding and WIFIA/bonding financing options, SWBNO would in addition have the opportunity to further utilize the projected operational savings of \$9.7M that would be realized after implementation of Alternative 3 or 3A as detailed above, whereas the ESCO option fully utilizes the \$9.7M in debt servicing.


Figure 5. Comparison of Annual Capital Repayment Requirements for Alternative 3

Jacobs

Financing Options for Power Master Plan Alternatives - FINAL

Figure 6. Comparison of Annual Capital Repayment Requirements for Alternative 3A

Jacobs

Memorandum

Financing Options for Power Master Plan Alternatives - FINAL

3. Next Steps

- SWBNO will consider the options presented in this memorandum.
- Given EPA's announced schedule for publishing the Notice of Funding Availability (NOFA) for Year
 4 of the WIFIA program, a decision to develop an LOI for this cycle by the end of March of 2020 is
 recommended, to allow adequate time for SWBNO to develop a quality submission for the Year 4
 cycle.
- SWBNO will consider whether to implement Alternative 3 in full, or if a reduced scope, such as Alternative 3A will be implemented.

ATTACHMENT 1 POTENTIAL FUNDING RESOURCES

Potential Funding / Financing Options for SWBNO Capital Projects

Resource Source	Resource Name	Resource Type	Web Link	Applicability	Funding Scale	Description:
Large Scale Resources						
EPA-WIFIA	Notice of Funding Availability (NOFA) for Applications for Credit Assistance under the Water Infrastructure Finance and Innovation Act (WIFIA) Program	Low Interest Loan	<u>Link</u>	Power, Drainage, Flood Risk Management	TBD-Large Scale	The Water Infrastructure Finance & Innovation Act (WIFIA) established the federal credit and loan program known commonly as WIFIA. This is a highly successful and well-subscribed federal loan and credit assistance program administered by EPA for eligible water and wastewater projects, providing long-term, low interest loans and related credit assistance that remain subordinate to other project indebtments. The maximum loan is 49% of the eligible Project Costs. Eligible borrowers are all forms of state/municipal governments, or indeed private entities seeking partnerships under contracts with government bodies. WIFIA is applicable for power projects, and there is potential to evaluate previous HMGP and power capital funds expended within the past 5 years as part of the 51% component that must be provided by the borrower from non-WIFIA sources. Non-WIFIA sources for the 51% match can include revenue bonds, SRF loans, user fee revenues and a number of other potential sources of funding.
STATE	Drinking Water Revolving Loan Fund (DWRLF)	Low Interest Loan	<u>Link</u>	Process Equipment / Facilities, Potable Water Infrastructure, Energy/Water savings projects		"As a result of State Legislation, as well as legislation by the U.S. Congress, the Drinking Water Revolving Loan Fund (DWRLF) was created to assist public water systems in financing needed drinking water infrastructure improvements (e.g., treatment plant, distribution main replacement, storage facilities). The DWRLF is administered by the Louisiana Department of Health (LDH) Office of Public Health (OPH). Similar to the Clean Water State Revolving Fund (CWSRF) administered by the Louisiana Department of Environmental Quality (LDEQ), this program provides low-interest loans for construction of eligible water system projects." - DWRLF
L EDA	2019 Disaster Supplemental Notice of Funding Opportunity	Grant	<u>Link</u>	Public Works	Variable (>\$1M)	\$587 million available to eligible grantees in communities impacted by natural disasters in 2018 and Floods and Tornadoes in 2019.
EDA	FY 2020 Public Works and Economic Adjustment Assistance Programs Application Submission and Program Requirements	Grant	<u>Link</u>	Public Works	Variable (>\$1M)	Provides investments that support construction, non-construction, planning, technical assistance, and revolving loan fund projects under EDA's Public Works program and EAA programs.
STORMWATER UTILITY FEE	Implement additional stormwater utility fee.	Municipal Fee	<u>N/A</u>	Power, Drainage, Flood Risk Management	TBD-Large Scale	Typically, a proportional fee tied to impervious surface area of a customer's site (i.e. how much runoff each property creates). A fee can also be based upon the quality of runoff from each customer's site. The fee could be billed as an extra lined item on a customer's water/sewer bill, or their tax bill. This is a potentially stable and reliable source of funds.
	Private financing under investment partnerships or P3s	Р3	N/A	Power, Drainage, Flood Risk Management	TBD-Large Scale	Public-private investment partnerships are tools that can accelerate delivery, share risks in delivery and mix hybrid funding and financing sources of capital. Many local communities nationwide have generated amounts ranging from tens of millions, to hundreds of millions of dollars, from the leasing-out or outright sale of water and wastewater utilities by employing P3 approaches. Options for P3s include outsourced operations and maintenance contracts, and lease agreements. They are financed by rates or charges, assessments, capturing increased property values through enhanced distribution systems or access, and can be structured in a way to soften future rate increases not linked to performance measures. Private partners can be mandated to employ existing municipal employees as assets that will be needed to run the utility, at comparable wages and benefits, but subject to performance obligations in their duties. P3s offer the opportunity of realizing economies of scale in pricing systems, equipment, or innovations in design, construction or operations. Example case studies are available: the Scranton Sewer Authority outright sale to a private partner, and using the proceeds to pay off \$75 million in debt, while generating \$90 million for the local city agencies to spend on other capital projects by virtue of the sale proceeds (2016); or wastewater concessions such as the City of Rialto, California (30-year operating concession under a P3); Allentown, PA (50-year lease concession agreement with an up-front payment of \$220 million); and Bessemer, Alabama (15% reduction in costs), among others. Any eligible project undergoing capital expansion or rehabilitation/upgrade may benefit from this funding source. Revenue mechanisms include user charges and/or fees (e.g., stormwater charges, assessment fees, etc.), and can include public sources of funds made available for paying off annual maintenance, renewal, replacement activities. These sources of monies can then be leveraged into repaying debt that is issued, or
DHS-FEMA	HMGP-Flood Mitigation Assistance Program, Pre- Disaster Mitigation Program.	Federal Grant	<u>Link</u>	Power, Drainage, Flood Risk Management	TBD-Large Scale	Annually reoccurring opportunities to submit grant applications to support pre-disaster planning, hazard mitigation planning and project implementation. SWBNO may submit new applications to address newly identified hazard mitigation priorities and/or worsening environmental conditions.
Small Scale Resources						
STATE	Clean Water State Revolving Fund	Low Interest Loan	<u>Link</u>	Process Equipment / Facilities, General Water Infrastructure, Energy/Water Savings	Subject to Selection Board	"Louisiana's CWSRF loan program offers low-interest loans to communities for construction or upgrade of wastewater treatment works and other water quality improvement projects. Eligible projects include: Construction of publicly owned treatment works; implementation of a non-point source pollution management program; and implementation of an estuary improvement program." - CWSRF

Potential Funding / Financing Options for SWBNO Capital Projects

Resource Source	Resource Name	Resource Type	Web Link	Applicability	Funding Scale	Description:
Low Probability Options						
STATE	Louisiana Energy Fund (If Reinstated)	Low Interest Loan	<u>Link</u>	Energy Conservation Projects for Public/Municipal entities	TBD-Large Scale	"Was available to all publicly funded institutions implementing energy conservation measures under a performance-based energy efficiency contract. Further, funding was required to be used exclusively to provide interest rate reduction on third party energy conservation loans to publicly funded institutions domiciled in Louisiana." - LEF
HUD	Section 108 Loan Guarantee Program	Block Grant	<u>Link</u>	Must Benefit Low-Moderate income persons or meet urgent need. Water/Wastewater does apply	TBD	"CDBG funds may be utilized to address a wide variety of community needs, including construction or renovation of various infrastructure projects such as water, wastewater and solid waste facilities, streets, and flood control projects. The funds must be used for activities that either benefit low- and moderate-income persons or address community development needs that have a particular urgency." - CDBG
FEMA	Louisiana Hazard Mitigation Grant Program (HMGP)	Federal Grant	<u>Link</u>	Critical Health and Safety Infrastructure	TBD	"The purpose of the HMGP program is to help communities implement hazard mitigation measures following a Presidential major disaster declaration. Hazard mitigation is any action taken to reduce or eliminate long term risk to people and property from natural hazards. Mitigation planning is a key process used to breaking the cycle of disaster damage, reconstruction, and repeated damage." - HMGP
FEDERAL	Unsolicited Proposals	TBD	<u>N/A</u>	Power, Drainage, Flood Risk Management	TBD	Develop custom project or program proposals to federal and state agencies.
DOE-EERE	DE-FOA-0002090: BUILDINGS ENERGY EFFICIENCY FRONTIERS & INNOVATION TECHNOLOGIES (BENEFIT) - 2019	Federal Grant	<u>Link</u>	Buildings	<\$1M	This annually reoccurring Funding Opportunity Announcement (FOA) will provide funding to improve the energy productivity of buildings (e.g. HVAC improvements).